Twenty years of distributed port-Hamiltonian systems: a literature review
Authors
Ramy Rashad, Federico Califano, Arjan J van der Schaft, Stefano Stramigioli
Abstract
The port-Hamiltonian (pH) theory for distributed parameter systems has developed greatly in the past two decades. The theory has been successfully extended from finite-dimensional to infinite-dimensional systems through a lot of research efforts. This article collects the different research studies carried out for distributed pH systems. We classify over a hundred and fifty studies based on different research focuses ranging from modeling, discretization, control and theoretical foundations. This literature review highlights the wide applicability of the pH systems theory to complex systems with multi-physical domains using the same tools and language. We also supplement this article with a bibliographical database including all papers reviewed in this paper classified in their respective groups.
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2020
- Volume: 37
- Issue: 4
- Pages: 1400–1422
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnaa018
BibTeX
@article{Rashad_2020,
title={{Twenty years of distributed port-Hamiltonian systems: a literature review}},
volume={37},
ISSN={1471-6887},
DOI={10.1093/imamci/dnaa018},
number={4},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Rashad, Ramy and Califano, Federico and van der Schaft, Arjan J and Stramigioli, Stefano},
year={2020},
pages={1400--1422}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Augner, (2018)
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Baaiu, A., Couenne, F., Lefevre, L., Gorrec, Y. L. & Tayakout, M. ENERGY BASED DISCRETIZATION OF AN ADSORPTION COLUMN. IFAC Proceedings Volumes vol. 39 753–758 (2006) – 10.3182/20060402-4-br-2902.00753
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Banavar, R. & Dey, B. Stabilizing a Flexible Beam on a Cart: A Distributed Port-Hamiltonian Approach. Journal of Nonlinear Science vol. 20 131–151 (2009) – 10.1007/s00332-009-9054-1
- Bassi, Lagrangian and Hamiltonian Methods for Nonlinear Control 2006 (2007)
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Califano, F., Bin, M., Macchelli, A. & Melchiorri, C. Stability Analysis of Nonlinear Repetitive Control Schemes. IEEE Control Systems Letters vol. 2 773–778 (2018) – 10.1109/lcsys.2018.2849617
- Califano, F. & Macchelli, A. A Stability Analysis Based on Dissipativity of Linear and Nonlinear Repetitive Control. IFAC-PapersOnLine vol. 52 40–45 (2019) – 10.1016/j.ifacol.2019.08.008
- Califano, 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017)
- Cardoso-Ribeiro, 2019 IEEE 58th Conference on Decision and Control (CDC) (2019)
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. IFAC-PapersOnLine vol. 51 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Clemente-Gallardo, Proceedings of the 41st IEEE Conference on Decision and Control (2002)
- Diagne, M. & Maschke, B. Port Hamiltonian formulation of a system of two conservation laws with a moving interface. European Journal of Control vol. 19 495–504 (2013) – 10.1016/j.ejcon.2013.09.001
- Eberard, Proceedings of 2005 International Conference Physics and Control (2005)
- Eberard, D. & Maschke, B. Port hamiltonian systems extended to irreversible systems : The example of the heat conduction. IFAC Proceedings Volumes vol. 37 243–248 (2004) – 10.1016/s1474-6670(17)31230-2
- Eberard, PAMM: Proceedings in Applied Mathematics and Mechanics (2007)
- Ennsbrunner, Proceedings of the 44th IEEE Conference on Decision and Control (2005)
- Falaize, A. & Hélie, T. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano. Journal of Sound and Vibration vol. 390 289–309 (2017) – 10.1016/j.jsv.2016.11.008
- Golo, Proceedings of the 41st IEEE Conference on Decision and Control (2002)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Golo, G., van der Schaft, A. & Stramigioli, S. Hamiltonian Formulation of Planar Beams. IFAC Proceedings Volumes vol. 36 147–152 (2003) – 10.1016/s1474-6670(17)38882-1
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Hamroun, Port-based modelling for open channel irrigation systems. Trans. Fluid Mech. (2006)
- Hamroun, Proceedings of the IEEE Conference on Decision and Control (2007)
- Harkort, C. & Deutscher, J. Stability and passivity preserving Petrov–Galerkin approximation of linear infinite-dimensional systems. Automatica vol. 48 1347–1352 (2012) – 10.1016/j.automatica.2012.04.010
- Hastir, A., Califano, F. & Zwart, H. Well-posedness of infinite-dimensional linear systems with nonlinear feedback. Systems & Control Letters vol. 128 19–25 (2019) – 10.1016/j.sysconle.2019.04.002
- Heidari, H. & Zwart, H. Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod. Mathematical and Computer Modelling of Dynamical Systems vol. 25 447–462 (2019) – 10.1080/13873954.2019.1659374
- Jacob, Vol. 223 of Operator Theory: Advances and Applications (2012)
- Jacob, B. & Zwart, H. An operator theoretic approach to infinite‐dimensional control systems. GAMM-Mitteilungen vol. 41 (2018) – 10.1002/gamm.201800010
- Kosaraju, Proceedings of the 2017 Indian Control Conference, ICC 2017 (2017)
- Kotyczka, P. On the feedforward control problem for discretized port-Hamiltonian systems. IFAC Proceedings Volumes vol. 47 652–658 (2014) – 10.3182/20140824-6-za-1003.00796
- Kotyczka, P. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 49 298–303 (2016) – 10.1016/j.ifacol.2016.07.457
- Kotyczka, P. & Blancato, A. Feedforward control of a channel flow based on a discretized port-Hamiltonian model. IFAC-PapersOnLine vol. 48 194–199 (2015) – 10.1016/j.ifacol.2015.10.238
- Kotyczka, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (2014)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Kurula, Linear wave systems on n -D spatial domains. Internat. J. Control (2015)
- Gorrec, Y. L., Macchelli, A., Ramirez, H. & Zwart, H. Energy shaping of boundary controlled linear port Hamiltonian systems. IFAC Proceedings Volumes vol. 47 1580–1585 (2014) – 10.3182/20140824-6-za-1003.01966
- Le Gorrec, Proceedings of the IEEE International Conference on Control Applications (2006)
- Le Gorrec, Y. & Matignon, D. Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation. European Journal of Control vol. 19 505–512 (2013) – 10.1016/j.ejcon.2013.09.003
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Lequeurre, J. & Tucsnak, M. The piston problem in a port-Hamiltonian formalism. IFAC-PapersOnLine vol. 48 212–216 (2015) – 10.1016/j.ifacol.2015.10.241
- Lopezlena, R. & Scherpen, J. M. A. Lumped Approximation of Transmission Line with an Alternative Geometric Discretization. IFAC Proceedings Volumes vol. 37 381–386 (2004) – 10.1016/s1474-6670(17)30498-6
- Lopezlena, R. & Scherpen, J. M. A. On distributed port-hamiltonian process systems. IFAC Proceedings Volumes vol. 37 973–978 (2004) – 10.1016/s1474-6670(17)31352-6
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Macchelli, 51st IEEE Conference on Decision and Control (CDC) (2012)
- Macchelli, A. Energy-Based Control of Spatially-Discretized Distributed Port-Hamiltonian Systems. IFAC Proceedings Volumes vol. 45 786–791 (2012) – 10.3182/20120215-3-at-3016.00139
- Macchelli, Proceedings of the IEEE Conference on Decision and Control (2013)
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Macchelli, Proceedings of the IEEE Conference on Decision and Control (2015)
- Macchelli, 2016 IEEE 55th Conference on Decision and Control, CDC 2016 (2016)
- Macchelli, 2016 IEEE 55th Conference on Decision and Control, CDC 2016 (2016)
- Macchelli, A. & Califano, F. Dissipativity-based boundary control of linear distributed port-Hamiltonian systems. Automatica vol. 95 54–62 (2018) – 10.1016/j.automatica.2018.05.029
- Macchelli, A., Gorrec, Y. L. & Ramirez, H. Asymptotic Stabilisation of Distributed Port-Hamiltonian Systems by Boundary Energy-Shaping Control. IFAC-PapersOnLine vol. 48 488–493 (2015) – 10.1016/j.ifacol.2015.05.143
- Macchelli, Proceedings of the IEEE Conference on Decision and Control (2015)
- Macchelli, 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017 (2017)
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Macchelli, Proceedings of the 48h IEEE Conference on Decision and Control (CDC), and the 2009 28th Chinese Control Conference (2009)
- Macchelli, A. & Melchiorri, C. Passivity-based control of spatially discretized port-Hamiltonian system. IFAC Proceedings Volumes vol. 43 849–854 (2010) – 10.3182/20100901-3-it-2016.00158
- Macchelli, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC ’05 (2005)
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Transactions on Robotics vol. 23 650–660 (2007) – 10.1109/tro.2007.898990
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Transactions on Robotics vol. 25 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Macchelli, IEEE International Conference on Robotics and Automation (2006)
- Macchelli, A., Stramigioli, S. & Melchiorri, C. PORT-BASED FINITE ELEMENT MODEL OF A FLEXIBLE LINK. IFAC Proceedings Volumes vol. 40 158–163 (2007) – 10.3182/20070822-3-za-2920.00027
- Macchelli, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2004)
- Macchelli, 2004 43rd IEEE Conference on Decision and Control (CDC) (2004)
- Macchelli, A., van der Schaft, A. & Melchiorri, C. CONTROL BY INTERCONNECTION FOR DISTRIBUTED PORT HAMILTONIAN SYSTEMS. IFAC Proceedings Volumes vol. 38 489–494 (2005) – 10.3182/20050703-6-cz-1902.00736
- Malzer, T., Rams, H. & Schöberl, M. Energy-Based In-Domain Control of a Piezo-Actuated Euler-Bernoulli Beam. IFAC-PapersOnLine vol. 52 144–149 (2019) – 10.1016/j.ifacol.2019.08.025
- Maschke, B. & van der Schaft, A. J. On alternative Poisson brackets for fluid dynamical systems and their extension to Stokes-Dirac structures. IFAC Proceedings Volumes vol. 46 109–114 (2013) – 10.3182/20130925-3-fr-4043.00083
- Moulla, R., Lefèvre, L. & Maschke, B. Geometric pseudospectral method for spatial integration of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems vol. 17 85–104 (2011) – 10.1080/13873954.2010.537524
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Nishida, 18th European Control Conference (ECC) (2018)
- Nishida, G., Maschke, B. & Ikeura, R. Boundary Integrability of Multiple Stokes–Dirac Structures. SIAM Journal on Control and Optimization vol. 53 800–815 (2015) – 10.1137/110856058
- Nishida, Proceedings of the IEEE Conference on Decision and Control (2008)
- Nishida, Proceedings of the IEEE International Conference on Control Applications (2010)
- Nishida, Proceedings of the IEEE Conference on Decision and Control (2009)
- Nishida, G., Sugiura, M., Yamakita, M., Maschke, B. & Ikeura, R. Multi-Input Multi-Output Integrated Ionic Polymer-Metal Composite for Energy Controls. Micromachines vol. 3 126–136 (2012) – 10.3390/mi3010126
- Nishida, IFAC Proceedings Volumes, 17(1 PART 1) (2008)
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice vol. 19 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Nishida, G., Yamaguchi, K. & Sakamoto, N. Optimality of passivity-based controls for distributed port-Hamiltonian systems. IFAC Proceedings Volumes vol. 46 146–151 (2013) – 10.3182/20130904-3-fr-2041.00193
- Nishida, Proceedings of the 2004 American Control Conference (2004)
- Nishida, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (2005)
- Nishida, Proceedings of the 45th IEEE Conference on Decision and Control (2006)
- Nishida, Proceedings of the IEEE Conference on Decision and Control (2007)
- Pasumarthy, R., Ambati, V. R. & van der Schaft, A. J. Port-Hamiltonian discretization for open channel flows. Systems & Control Letters vol. 61 950–958 (2012) – 10.1016/j.sysconle.2012.05.003
- Pasumarthy, Int. Symp. on Nonlinear Theory and its Applications (NOLTA2005) (2005)
- Pasumarthy, R. & van der Schaft, A. A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach. Proceedings of the 45th IEEE Conference on Decision and Control 3984–3989 (2006) doi:10.1109/cdc.2006.377022 – 10.1109/cdc.2006.377022
- Pasumarthy, 16th International Symposium on Mathematical (2006)
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Polner, M. & van der Vegt, J. J. W. A Hamiltonian vorticity–dilatation formulation of the compressible Euler equations. Nonlinear Analysis: Theory, Methods & Applications vol. 109 113–135 (2014) – 10.1016/j.na.2014.07.005
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramirez, Proceedings of the IEEE Conference on Decision and Control (2013)
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Ramirez, 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017 (2017)
- Rams, Proceedings of the American Control Conference (2017)
- Rodriguez, Proceedings of the 40th IEEE Conference on Decision and Control (2001)
- Schlacher, Advances in Control Theory and Applications (2007)
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Schöberl, M. & Schlacher, K. Lagrangian and Port-Hamiltonian formulation for Distributed-parameter systems. IFAC-PapersOnLine vol. 48 610–615 (2015) – 10.1016/j.ifacol.2015.05.025
- Schöberl, M. & Schlacher, K. Port-Hamiltonian formulation for Higher-order PDEs. IFAC-PapersOnLine vol. 48 244–249 (2015) – 10.1016/j.ifacol.2015.10.247
- Schöberl, M. & Schlacher, K. On the extraction of the boundary conditions and the boundary ports in second-order field theories. Journal of Mathematical Physics vol. 59 (2018) – 10.1063/1.5024847
- Schöberl, Proceedings of the IEEE Conference on Decision and Control (2011)
- Schöberl, 2013 European Control Conference (ECC) (2013)
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Serhani, A., Matignon, D. & Haine, G. Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 51 131–136 (2018) – 10.1016/j.ifacol.2018.06.037
- Serhani, A., Matignon, D. & Haine, G. Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. IFAC-PapersOnLine vol. 52 96–101 (2019) – 10.1016/j.ifacol.2019.08.017
- Serhani, Geometric Science of Information (2019)
- Šešlija, Proceedings of the IEEE Conference on Decision and Control (2011)
- Seslija, M., Scherpen, J. M. A. & van der Schaft, A. Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems. Automatica vol. 50 369–377 (2014) – 10.1016/j.automatica.2013.11.020
- Šešlija, M., van der Schaft, A. & Scherpen, J. M. A. Reaction-Diffusion Systems in the Port-Hamiltonian Framework. IFAC Proceedings Volumes vol. 43 837–842 (2010) – 10.3182/20100901-3-it-2016.00116
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Hamiltonian perspective on compartmental reaction–diffusion networks. Automatica vol. 50 737–746 (2014) – 10.1016/j.automatica.2013.12.017
- Siuka, Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems–MTNS (2010)
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- Talasila, Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems (2002)
- Toledo, J., Wu, Y., Ramirez, H. & Gorrec, Y. L. Observer-Based State Feedback Controller for a class of Distributed Parameter Systems. IFAC-PapersOnLine vol. 52 114–119 (2019) – 10.1016/j.ifacol.2019.08.020
- Trang Vu, N. M., Trenchant, V., Ramirez, H., Lefèvre, L. & Le Gorrec, Y. Parabolic matching of hyperbolic system using Control by Interconnection. IFAC-PapersOnLine vol. 50 5574–5579 (2017) – 10.1016/j.ifacol.2017.08.1101
- Trenchant, V., Fares, Y., Ramirez, H. & Le Gorrec, Y. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC-PapersOnLine vol. 48 235–240 (2015) – 10.1016/j.ifacol.2015.10.245
- Trenchant, V., Hu, W., Ramirez, H. & Gorrec, Y. L. Structure Preserving Finite Differences in Polar Coordinates for Heat and Wave Equations. IFAC-PapersOnLine vol. 51 571–576 (2018) – 10.1016/j.ifacol.2018.03.096
- Trenchant, Proceedings of the American Control Conference (2017)
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Trenchant, 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017 (2017)
- Trivedi, M. V., Banavar, R. N. & Kotyczka, P. Hamiltonian modelling and buckling analysis of a nonlinear flexible beam with actuation at the bottom. Mathematical and Computer Modelling of Dynamical Systems vol. 22 475–492 (2016) – 10.1080/13873954.2016.1201517
- Trivedi, M. V., Banavar, R. N. & Maschke, B. M. Modeling of Hybrid Lumped-Distributed Parameter Mechanical Systems with Multiple Equilibria. IFAC Proceedings Volumes vol. 44 7696–7701 (2011) – 10.3182/20110828-6-it-1002.03070
- van der Schaft, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228) (2001)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vankerschaver, Proceedings of the IEEE Conference on Decision and Control (2010)
- Villegas, (2007)
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Villegas, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC ’05 (2005)
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Burning magneto-hydrodynamics plasmas model: A port-based modelling approach. IFAC-PapersOnLine vol. 50 13038–13043 (2017) – 10.1016/j.ifacol.2017.08.2002
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM Journal on Control and Optimization vol. 52 493–519 (2014) – 10.1137/090774598
- Voß, Proceedings of the IEEE Conference on Decision and Control (2011)
- Vu, N. M. T. & Lefèvre, L. Material balance and closure equations for plasmas in Tokamaks. IFAC Proceedings Volumes vol. 46 60–65 (2013) – 10.3182/20130714-3-fr-4040.00006
- Trang VU, N. M., LEFEVRE, L. & MASCHKE, B. Port-Hamiltonian formulation for systems of conservation laws: application to plasma dynamics in Tokamak reactors. IFAC Proceedings Volumes vol. 45 108–113 (2012) – 10.3182/20120829-3-it-4022.00016
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Vu, N. M. T., Lefèvre, L. & Nouailletas, R. Distributed and backstepping boundary controls for port-Hamiltonian systems with symmetries. Mathematical and Computer Modelling of Dynamical Systems vol. 23 55–76 (2016) – 10.1080/13873954.2016.1232280
- VU, N. M. T., LEFEVRE, L., NOUAILLETAS, R. & BREMOND, S. Geometric discretization for a plasma control model. IFAC Proceedings Volumes vol. 46 755–760 (2013) – 10.3182/20130204-3-fr-2033.00098
- Vu, N. M. T., Lefèvre, L., Nouailletas, R. & Brémond, S. Symplectic spatial integration schemes for systems of balance equations. Journal of Process Control vol. 51 1–17 (2017) – 10.1016/j.jprocont.2016.12.005
- Vu, Proceedings of the IEEE Conference on Decision and Control (2013)
- Wu, Y., Hamroun, B., Gorrec, Y. L. & Maschke, B. Power preserving model reduction of 2D vibro-acoustic system: A port Hamiltonian approach. IFAC-PapersOnLine vol. 48 206–211 (2015) – 10.1016/j.ifacol.2015.10.240
- Zhou, W., Hamroun, B., Couenne, F. & Le Gorrec, Y. Distributed port-Hamiltonian modelling for irreversible processes. Mathematical and Computer Modelling of Dynamical Systems vol. 23 3–22 (2016) – 10.1080/13873954.2016.1237970
- Zhou, W., Hamroun, B., Le Gorrec, Y. & Couenne, F. Infinite Dimensional Port Hamiltonian Representation of Chemical Reactors. IFAC Proceedings Volumes vol. 45 248–253 (2012) – 10.3182/20120829-3-it-4022.00036
- Zhou, W., Hamroun, B., Gorrec, Y. L. & Couenne, F. Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes. IFAC-PapersOnLine vol. 48 476–481 (2015) – 10.1016/j.ifacol.2015.05.119
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036