Passivity-based control of spatially discretized port-Hamiltonian system
Authors
Alessandro Macchelli, Claudio Melchiorri
Abstract
The main contribution of this paper is a procedure for the passivity-based control of high-order port-Hamiltonian systems obtained from the spatial discretization of infinite dimensional dynamics. Beside the intrinsic difficulties related to the large number of state variables, the finite element model is generally given in terms of a Dirac structure and is completely a-causal, which implies that the plant dynamics is not given in standard input-state-output form, but as a set of DAEs. Consequently, the passivity-based methods have to be extended in order to deal with dynamical systems with constraints, usually appearing in the form of Lagrangian multipliers.
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2010
- Volume: 43
- Issue: 14
- Pages: 849–854
- Publisher: Elsevier BV
- DOI: 10.3182/20100901-3-it-2016.00158
- Note: 8th IFAC Symposium on Nonlinear Control Systems
BibTeX
@article{Macchelli_2010,
title={{Passivity-based control of spatially discretized port-Hamiltonian system}},
volume={43},
ISSN={1474-6670},
DOI={10.3182/20100901-3-it-2016.00158},
number={14},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Macchelli, Alessandro and Melchiorri, Claudio},
year={2010},
pages={849--854}
}
References
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Luo, (1999)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Ortega, Putting energy back in control. Control Systems Magazine, IEEE (2001)
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control 80, 1421–1438 (2007) – 10.1080/00207170701361273
- Rodriguez, On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Decision and Control (CDC 2001). Proceedings of the 40th IEEE Conference on (2001)
- Swaters, (2000)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3