Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation
Authors
Abstract
The main contribution of this paper is a procedure for the control by energy shaping via Casimir generation of infinite dimensional port-Hamiltonian systems based on a particular finite element approximation. The proposed approach is justified by the fact that the adopted spatial discretization technique is able to preserve Casimir functions in the closed-loop system when going from the distributed to the (approximated) lumped parameter system. Besides the intrinsic difficulties related to the large number of state variables, the finite element model is generally given in terms of a Dirac structure and is completely a -causal, which implies that the plant dynamics is not given in standard input-state-output form, but as a set of DAEs. Consequently, the classical energy Casimir method has to be extended in order to deal with dynamical systems with constraints, usually appearing in the form of Lagrangian multipliers. The general methodology is illustrated with the help of an example in which the distributed parameter system is a lossless transmission line.
Keywords
Passivity-based control; Energy shaping control; Port-Hamiltonian systems; Casimir functions
Citation
- Journal: Systems & Control Letters
- Year: 2011
- Volume: 60
- Issue: 8
- Pages: 579–589
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2011.04.016
BibTeX
@article{Macchelli_2011,
title={{Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation}},
volume={60},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2011.04.016},
number={8},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Macchelli, Alessandro},
year={2011},
pages={579--589}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- van der Schaft, (2000)
- Swaters, (2000)
- Luo, (1999)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Bassi, An algorithm to discretize one-dimensional distributed port Hamiltonian systems. (2007)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.2307/2001258
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3768-3773 Vol.4 (2004) doi:10.1109/cdc.2004.1429325 – 10.1109/cdc.2004.1429325
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Shampine, L. F., Reichelt, M. W. & Kierzenka, J. A. Solving Index-1 DAEs in MATLAB and Simulink. SIAM Review vol. 41 538–552 (1999) – 10.1137/s003614459933425x
- Pasumarthy, R. & van der Schaft, A. A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach. Proceedings of the 45th IEEE Conference on Decision and Control 3984–3989 (2006) doi:10.1109/cdc.2006.377022 – 10.1109/cdc.2006.377022
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Transactions on Robotics vol. 23 650–660 (2007) – 10.1109/tro.2007.898990
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Transactions on Robotics vol. 25 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- (2009)