Optimality of passivity-based controls for distributed port-Hamiltonian systems
Authors
Gou Nishida, Kyosuke Yamaguchi, Noboru Sakamoto
Abstract
This paper discusses the (inverse) optimality and practical usage of passivity-based controls for distributed port-Hamiltonian systems. We first clarify that passivity-based controls, damping assignment and potential shaping can be derived from a linear quadratic type optimal control problem. Next, we describe the limitation of passivity-based boundary controls and propose a practical usage of the methods in terms of discretization. Finally, we illustrate numerical results having a similar property to the strain feedback methods derived from semigroup theory for stabilizing and stiffness controlling flexible beams.
Keywords
distributed parameter systems; passivity; optimal control; variational calculus
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2013
- Volume: 46
- Issue: 23
- Pages: 146–151
- Publisher: Elsevier BV
- DOI: 10.3182/20130904-3-fr-2041.00193
- Note: 9th IFAC Symposium on Nonlinear Control Systems
BibTeX
@article{Nishida_2013,
title={{Optimality of passivity-based controls for distributed port-Hamiltonian systems}},
volume={46},
ISSN={1474-6670},
DOI={10.3182/20130904-3-fr-2041.00193},
number={23},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Nishida, Gou and Yamaguchi, Kyosuke and Sakamoto, Noboru},
year={2013},
pages={146--151}
}
References
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
- Willems, J. Terminals and Ports. IEEE Circuits Syst. Mag. 10, 8–26 (2010) – 10.1109/mcas.2010.938635
- Sepulchre, R., Janković, M. & Kokotović, P. V. Constructive Nonlinear Control. Communications and Control Engineering (Springer London, 1997). doi:10.1007/978-1-4471-0967-9 – 10.1007/978-1-4471-0967-9
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice 19, 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Simo, J. C. & Vu-Quoc, L. On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I. Journal of Applied Mechanics 53, 849–854 (1986) – 10.1115/1.3171870
- Simo, J. C. & Vu-Quoc, L. On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II. Journal of Applied Mechanics 53, 855–863 (1986) – 10.1115/1.3171871
- Zheng-Hua Luo. Direct strain feedback control of flexible robot arms: new theoretical and experimental results. IEEE Trans. Automat. Contr. 38, 1610–1622 (1993) – 10.1109/9.262031
- Morita, S. Geometry of Differential Forms. Translations of Mathematica Monographs (2001) doi:10.1090/mmono/201 – 10.1090/mmono/201
- Liberzon, D. Calculus of Variations and Optimal Control Theory. (2011) doi:10.2307/j.ctvcm4g0s – 10.2307/j.ctvcm4g0s