Energy-Based In-Domain Control of a Piezo-Actuated Euler-Bernoulli Beam
Authors
Tobias Malzer, Hubert Rams, Markus Schöberl
Abstract
The main contribution of this paper is the extension of the well-known boundary-control strategy based on structural invariants to the control of infinite-dimensional systems with in-domain actuation. The systems under consideration, governed by partial differential equations, are described in a port-Hamiltonian setting making heavy use of the underlying jet-bundle structure, where we restrict ourselves to systems with 1-dimensional spatial domain and 2nd-order Hamiltonian. To show the applicability of the proposed approach, we develop a dynamic controller for an Euler-Bernoulli beam actuated with a pair of piezoelectric patches and conclude the article with simulation results.
Keywords
infinite-dimensional systems; partial differential equations; in-domain actuation; differential geometry; port-Hamiltonian systems; structural invariants; dynamic controllers
Citation
- Journal: IFAC-PapersOnLine
- Year: 2019
- Volume: 52
- Issue: 2
- Pages: 144–149
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2019.08.025
- Note: 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019- Oaxaca, Mexico, 20–24 May 2019
BibTeX
@article{Malzer_2019,
title={{Energy-Based In-Domain Control of a Piezo-Actuated Euler-Bernoulli Beam}},
volume={52},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2019.08.025},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Malzer, Tobias and Rams, Hubert and Schöberl, Markus},
year={2019},
pages={144--149}
}
References
- Giachetta, (1997)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Jacob, (2012)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems I. Modeling. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3762-3767 Vol.4 (2004) doi:10.1109/cdc.2004.1429324 – 10.1109/cdc.2004.1429324
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3768-3773 Vol.4 (2004) doi:10.1109/cdc.2004.1429325 – 10.1109/cdc.2004.1429325
- Malzer, T., Rams, H. & Schoberl, M. Energy-Based Control of Nonlinear Infinite-Dimensional Port-Hamiltonian Systems with Dissipation. 2018 IEEE Conference on Decision and Control (CDC) 3746–3751 (2018) doi:10.1109/cdc.2018.8619380 – 10.1109/cdc.2018.8619380
- Meirovitch, (1967)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Rams, H. & Schoberl, M. On structural invariants in the energy based control of port-Hamiltonian systems with second-order Hamiltonian. 2017 American Control Conference (ACC) 1139–1144 (2017) doi:10.23919/acc.2017.7963106 – 10.23919/acc.2017.7963106
- Schöberl, M. & Schlacher, K. On the extraction of the boundary conditions and the boundary ports in second-order field theories. Journal of Mathematical Physics vol. 59 (2018) – 10.1063/1.5024847
- Schoberl, M. & Siuka, A. On Casimir functionals for field theories in Port-Hamiltonian description for control purposes. IEEE Conference on Decision and Control and European Control Conference 7759–7764 (2011) doi:10.1109/cdc.2011.6160430 – 10.1109/cdc.2011.6160430
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Schoberl, M. & Siuka, A. Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. 2013 European Control Conference (ECC) 548–553 (2013) doi:10.23919/ecc.2013.6669137 – 10.23919/ecc.2013.6669137
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Schröck, J., Meurer, T. & Kugi, A. Control of a flexible beam actuated by macro-fiber composite patches: I. Modeling and feedforward trajectory control. Smart Materials and Structures vol. 20 015015 (2010) – 10.1088/0964-1726/20/1/015015
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- van der Schaft, (2000)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3