Distributed port-Hamiltonian modelling for irreversible processes
Authors
W. Zhou, B. Hamroun, F. Couenne, Y. Le Gorrec
Abstract
Infinite-dimensional port-Hamiltonian representation of irreversible processes accounting for the thermal energy domain is presented. Two examples are studied: the transmission line and a non-isothermal reaction diffusion process. The proposed approach uses thermodynamic variables in order to define the infinite-dimensional interconnection structure linking the different phenomena. A presentation is given for one-dimensional spatial domain. For the transmission line, the Hamiltonian is the total energy and for the reaction diffusion process it is the enthalpy or the opposite of entropy.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2017
- Volume: 23
- Issue: 1
- Pages: 3–22
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2016.1237970
BibTeX
@article{Zhou_2016,
title={{Distributed port-Hamiltonian modelling for irreversible processes}},
volume={23},
ISSN={1744-5051},
DOI={10.1080/13873954.2016.1237970},
number={1},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Zhou, W. and Hamroun, B. and Couenne, F. and Le Gorrec, Y.},
year={2016},
pages={3--22}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Schlacher, K. Mathematical modeling for nonlinear control: a Hamiltonian approach. Mathematics and Computers in Simulation vol. 79 829–849 (2008) – 10.1016/j.matcom.2008.02.011
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Maschke, B. M. & van der Schaft, A. Hamiltonian representation of distributed parameter systems with boundary energy flow. Lecture Notes in Control and Information Sciences 137–142 (2001) doi:10.1007/bfb0110297 – 10.1007/bfb0110297
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Zhou W., IFAC-PapersOnLine MATHMOD 2015 (2015)
- Bird R.B., Transport Phenomena (2002)
- De Groot S.R., Non-Equilibrium Thermodynamics (1983)
- Jillson, K. R. & Erik Ydstie, B. Process networks with decentralized inventory and flow control. Journal of Process Control vol. 17 399–413 (2007) – 10.1016/j.jprocont.2006.12.006
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dorfman I., Dirac Structures and Integrability of Nonlinear Evolution Equations (1993)
- Maschke B., Lecture Notes on Control and Information Sciences (2005)
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Structured modeling for processes: A thermodynamical network theory. Computers & Chemical Engineering vol. 32 1120–1134 (2008) – 10.1016/j.compchemeng.2007.04.012
- Callen H.B., Thermodynamics and an Introduction to Thermostatics (1985)
- Glansdorff P., Thermodynamic Theory of Structure, Stability and Fluctuations (1971)