Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws
Authors
R. Moulla, L. Lefévre, B. Maschke
Abstract
A reduction method is presented for systems of conservation laws with boundary energy flow. It is stated as a generalized pseudo-spectral method which performs exact differentiation by using simultaneously several approximation spaces generated by polynomials bases and suitable choices of port-variables. The symplecticity of this spatial reduction method is proved when used for the reduction of both closed and open systems of conservation laws, for any choice of collocation points (i.e. for any polynomial bases). The symplecticity of some more usual collocation schemes is discussed and finally their accuracy on approximation of the spectrum, on the example of the ideal transmission line, is discussed in comparison with the suggested reduction scheme.
Keywords
Symplectic methods; Spatial reduction; Pseudo-spectral methods; Hamiltonian systems; Dirac structures; Systems of conservation laws; Open systems
Citation
- Journal: Journal of Computational Physics
- Year: 2012
- Volume: 231
- Issue: 4
- Pages: 1272–1292
- Publisher: Elsevier BV
- DOI: 10.1016/j.jcp.2011.10.008
BibTeX
@article{Moulla_2012,
title={{Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws}},
volume={231},
ISSN={0021-9991},
DOI={10.1016/j.jcp.2011.10.008},
number={4},
journal={Journal of Computational Physics},
publisher={Elsevier BV},
author={Moulla, R. and Lefévre, L. and Maschke, B.},
year={2012},
pages={1272--1292}
}
References
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Blankenstein, G. & Ratiu, T. S. Singular reduction of implicit Hamiltonian systems. Reports on Mathematical Physics vol. 53 211–260 (2004) – 10.1016/s0034-4877(04)90013-4
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics vol. 47 57–100 (2001) – 10.1016/s0034-4877(01)90006-0
- Bossavit, Differential forms and the computation of fields and forces in electromagnetism. European Journal of Mechanics, B/Fluids (1991)
- Bossavit, (1998)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Choquet-Bruhat, (1982)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.2307/2001258
- Courant, Beyond Poisson structures. (1988)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Barré de Saint-Venant, Théorie du mouvement non-permanent des eaux avec application aux crues des rivières et à introduction des marées dans leur lit. Comptes rendus de l’Académie des Sciences, Paris (1871)
- Dorfman, I. Ya. Dirac structures of integrable evolution equations. Physics Letters A vol. 125 240–246 (1987) – 10.1016/0375-9601(87)90201-5
- Dorfman, (1993)
- Dulhoste, J.-F., Besancon, G. & Georges, D. Non-linear control of water flow dynamics by input-output linearization based on a collocation method model. 2001 European Control Conference (ECC) 2632–2637 (2001) doi:10.23919/ecc.2001.7076326 – 10.23919/ecc.2001.7076326
- Fornberg, (1996)
- Franco, A. A., Schott, P., Jallut, C. & Maschke, B. A Multi‐Scale Dynamic Mechanistic Model for the Transient Analysis of PEFCs. Fuel Cells vol. 7 99–117 (2007) – 10.1002/fuce.200500204
- van der Schaft, Hamiltonian discretization of the Telegrapher’s equation. Automatica (2004)
- Graf, Hydraulique fluviale – Ecoulement et phTnomFnes de transport dans les canaux a gTomTtrie simple. (2000)
- Hamroun, Port-based modelling for open channel irrigation systems. Transactions on Fluid Mechanics (2006)
- Lasagni, F. M. Canonical Runge-Kutta methods. ZAMP Zeitschrift f�r angewandte Mathematik und Physik vol. 39 952–953 (1988) – 10.1007/bf00945133
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, (2009)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Maschke, (2005)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Maschke, Canonical interdomain coupling in distributed parameter systems: an extension of the symplectic gyrator. (2001)
- Maschke, (1997)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Morrison, P. J. & Greene, J. M. Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. Physical Review Letters vol. 45 790–794 (1980) – 10.1103/physrevlett.45.790
- Nishida, G., Takagi, K., Maschke, B. & Luo, Z. Multi-Scale Distributed Port-Hamiltonian Representation of Ionic Polymer-Metal Composite. IFAC Proceedings Volumes vol. 41 2300–2305 (2008) – 10.3182/20080706-5-kr-1001.00388
- Olver, Applications of Lie Groups to Differential Equations. (1993)
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ouarit, H., Lefevre, L. & Georges, D. Robust optimal control of one-reach open-channels. 2003 European Control Conference (ECC) 2413–2417 (2003) doi:10.23919/ecc.2003.7085328 – 10.23919/ecc.2003.7085328
- Parsian, A. & Deh Abad, A. S. Dirac structures on Hilbert spaces. International Journal of Mathematics and Mathematical Sciences vol. 22 97–108 (1999) – 10.1155/s0161171299220972
- Reich, S. Multi-Symplectic Runge–Kutta Collocation Methods for Hamiltonian Wave Equations. Journal of Computational Physics vol. 157 473–499 (2000) – 10.1006/jcph.1999.6372
- Jamiolkowski, (1985)
- Sanz-Serna, J. M. Runge-kutta schemes for Hamiltonian systems. BIT vol. 28 877–883 (1988) – 10.1007/bf01954907
- Valentin, C., Magos, M. & Maschke, B. A port-Hamiltonian formulation of physical switching systems with varying constraints. Automatica vol. 43 1125–1133 (2007) – 10.1016/j.automatica.2006.12.022
- van der Schaft, A. J. Implicit Hamiltonian systems with symmetry. Reports on Mathematical Physics vol. 41 203–221 (1998) – 10.1016/s0034-4877(98)80176-6
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Conservation Laws and Lumped System Dynamics. Model-Based Control: 31–48 (2009) doi:10.1007/978-1-4419-0895-7_3 – 10.1007/978-1-4419-0895-7_3
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics vol. 57 133–156 (2006) – 10.1016/j.geomphys.2006.02.009