Port hamiltonian systems extended to irreversible systems : The example of the heat conduction
Authors
Abstract
In previous work we have proposed a port Hamiltonian formulation of distributed parameter systems with boundary energy flow. These port Hamiltonian systems are defined with respect to a Dirac structure, called Stokes-Dirac structure, in some product space of exterior differential forms. In this paper we show how to extend this formulation to irreversible thermodynamic systems on the example of the heat conduction model. The geometric structure defining the dynamics is shown to be constituted by a Dirac structure constrained on some on its port variables by nonlinear relations associated with the irreversible entropy creation in the system.
Keywords
Nonlinear systems theory; Port Hamiltonian systems; Irreversible Thermodynamics
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2004
- Volume: 37
- Issue: 13
- Pages: 243–248
- Publisher: Elsevier BV
- DOI: 10.1016/s1474-6670(17)31230-2
- Note: 6th IFAC Symposium on Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart, Germany, 1-3 September, 2004
BibTeX
@article{Eberard_2004,
title={{Port hamiltonian systems extended to irreversible systems : The example of the heat conduction}},
volume={37},
ISSN={1474-6670},
DOI={10.1016/s1474-6670(17)31230-2},
number={13},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Eberard, D. and Maschke, B.},
year={2004},
pages={243--248}
}
References
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Dorfman, (1993)
- Golo, (2002)
- Jaumann, Sitzungsber. der Math.-Naturwiss. Klasse der Kaiserlichen Akad. der Wissenschaften, Wien (1911)
- Libermann, (1987)
- Macchelli, Distributed port hamiltonian formulation of the timoshenko beam : Modeling and control. (2003)
- Maschke, Interconnection and structure in physical systems’ dynamics. (1998)
- Maschke, Canonical interdomain coupling in distributed parameter systems: an extension of the symplectic gyrator. (2001)
- Olver, P. J. Symmetry Groups of Differential Equations. Graduate Texts in Mathematics 75–182 (1993) doi:10.1007/978-1-4612-4350-2_2 – 10.1007/978-1-4612-4350-2_2
- Ortega, (2003)
- Planck, Vorlesungen über Thermodynamik. (1964)
- Bird, (2002)
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, Modelling and Control of Mechanical Systems. (1997)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3