Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod
Authors
Abstract
Analysis of nonlocal axial vibration in a nanorod is a crucial subject in science and engineering because of its wide applications in nanoelectromechanical systems. The aim of this paper is to show how these vibrations can be modelled within the framework of port-Hamiltonian systems. It turns out that two port-Hamiltonian descriptions in physical variables are possible. The first one is in descriptor form, whereas the second one has a non-local Hamiltonian density. In addition, it is shown that under appropriate boundary conditions these models possess a unique solution which is non-increasing in the corresponding ‘energy’, i.e., the associated infinitesimal generator generates a contraction semigroup on a Hilbert space, whose norm is directly linked to the Hamiltonian.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2019
- Volume: 25
- Issue: 5
- Pages: 447–462
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2019.1659374
BibTeX
@article{Heidari_2019,
title={{Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod}},
volume={25},
ISSN={1744-5051},
DOI={10.1080/13873954.2019.1659374},
number={5},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Heidari, Hanif and Zwart, H.},
year={2019},
pages={447--462}
}
References
- Heidari H.. Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS) (2010)
- Heidari, H. DYNAMICAL ANALYSIS OF AN AXIALLY VIBRATING NANOROD. International Journal of Apllied Mathematics vol. 29 (2016) – 10.12732/ijam.v29i2.9
- Malek, A., Heidari, H. & Vali, M. Artificial magnetic nano-swimmer in drug delivery. 2015 22nd Iranian Conference on Biomedical Engineering (ICBME) 331–336 (2015) doi:10.1109/icbme.2015.7404165 – 10.1109/icbme.2015.7404165
- Popov, V. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports vol. 43 61–102 (2004) – 10.1016/j.mser.2003.10.001
- Şimşek, M. Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures vol. 43 182–191 (2010) – 10.1016/j.physe.2010.07.003
- Li, C., Lim, C. W. & Yu, J. L. Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Materials and Structures vol. 20 015023 (2010) – 10.1088/0964-1726/20/1/015023
- Karličić, D., Cajić, M., Murmu, T. & Adhikari, S. Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. European Journal of Mechanics - A/Solids vol. 49 183–196 (2015) – 10.1016/j.euromechsol.2014.07.005
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Jeltsema, D. & Doria-Cerezo, A. Port-Hamiltonian Formulation of Systems With Memory. Proceedings of the IEEE vol. 100 1928–1937 (2012) – 10.1109/jproc.2011.2164169
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Heidari H.. Port-Hamiltonian Formulation of Nonlocal Longitudinal Vibration in Nanorod (2018)
- Narendar, S. & Gopalakrishnan, S. Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Composites Part B: Engineering vol. 42 2013–2023 (2011) – 10.1016/j.compositesb.2011.05.021
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- J.A. Villegas, A port-Hamiltonian approach to distributed parameter systems, Ph.d. thesis, University of Twente, 2007.
- Engel K.J.. Graduate Texts in Mathematics (2000)
- Naylor A.W.. Applied Mathematical Sciences (1982)
- Zwart, H., Le Gorrec, Y. & Maschke, B. Building systems from simple hyperbolic ones. Systems & Control Letters vol. 91 1–6 (2016) – 10.1016/j.sysconle.2016.02.002
- Magri, F. A simple model of the integrable Hamiltonian equation. Journal of Mathematical Physics vol. 19 1156–1162 (1978) – 10.1063/1.523777