Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano
Authors
Abstract
This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.
Keywords
Passive modeling; Numerical methods; Port-Hamiltonian systems; Multiphysics system; Time domain simulation
Citation
- Journal: Journal of Sound and Vibration
- Year: 2017
- Volume: 390
- Issue:
- Pages: 289–309
- Publisher: Elsevier BV
- DOI: 10.1016/j.jsv.2016.11.008
BibTeX
@article{Falaize_2017,
title={{Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano}},
volume={390},
ISSN={0022-460X},
DOI={10.1016/j.jsv.2016.11.008},
journal={Journal of Sound and Vibration},
publisher={Elsevier BV},
author={Falaize, Antoine and Hélie, Thomas},
year={2017},
pages={289--309}
}
References
- Chabassier, J., Chaigne, A. & Joly, P. Modeling and simulation of a grand piano. The Journal of the Acoustical Society of America vol. 134 648–665 (2013) – 10.1121/1.4809649
- Bilbao, S., Torin, A. & Chatziioannou, V. Numerical Modeling of Collisions in Musical Instruments. Acta Acustica united with Acustica vol. 101 155–173 (2015) – 10.3813/aaa.918813
- Välimäki, V., Pakarinen, J., Erkut, C. & Karjalainen, M. Discrete-time modelling of musical instruments. Reports on Progress in Physics vol. 69 1–78 (2005) – 10.1088/0034-4885/69/1/r01
- Fettweis, A. Wave digital filters: Theory and practice. Proceedings of the IEEE vol. 74 270–327 (1986) – 10.1109/proc.1986.13458
- Smith, J. O., join(‘ ’. Physical Modeling Using Digital Waveguides. Computer Music Journal vol. 16 74 (1992) – 10.2307/3680470
- Fettweis, A. Pseudo-passivity, sensitivity, and stability of wave digital filters. IEEE Transactions on Circuit Theory vol. 19 668–673 (1972) – 10.1109/tct.1972.1083555
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- Duindam, (2009)
- Marsden, (2013)
- Lopes, N., Hélie, T. & Falaize, A. Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems. IFAC-PapersOnLine vol. 48 223–228 (2015) – 10.1016/j.ifacol.2015.10.243
- Hart, H. C., Fuller, M. W. & Lusby, W. S. A Precision Study of Piano Touch and Tone. The Journal of the Acoustical Society of America vol. 6 80–94 (1934) – 10.1121/1.1915706
- Muenster, M., Pfeifle, F., Weinrich, T. & Keil, M. Nonlinearities and self-organization in the sound production of the Rhodes piano. The Journal of the Acoustical Society of America vol. 136 2164–2164 (2014) – 10.1121/1.4899833
- van der Schaft, (2014)
- Khalil, (1996)
- Graff, (1973)
- Kelly, (2006)
- Fletcher, (1998)
- Giordano, N. & Winans, J. P., II. Piano hammers and their force compression characteristics: Does a power law make sense? The Journal of the Acoustical Society of America vol. 107 2248–2255 (2000) – 10.1121/1.428505
- Boutillon, X. Model for piano hammers: Experimental determination and digital simulation. The Journal of the Acoustical Society of America vol. 83 746–754 (1988) – 10.1121/1.396117
- Stulov, A. Hysteretic model of the grand piano hammer felt. The Journal of the Acoustical Society of America vol. 97 2577–2585 (1995) – 10.1121/1.411912
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Curtain, (2012)
- Hélie, T. & Matignon, D. Nonlinear damping models for linear conservative mechanical systems with preserved eigenspaces: a port-Hamiltonian formulation. IFAC-PapersOnLine vol. 48 200–205 (2015) – 10.1016/j.ifacol.2015.10.239
- Meirovitch, (1997)
- Horton, N. G. & Moore, T. R. Modeling the magnetic pickup of an electric guitar. American Journal of Physics vol. 77 144–150 (2009) – 10.1119/1.2990663
- Paiva, Acoustics and modeling of pickups. J. Audio Eng. Soc. (2012)
- Hamill, D. C. Lumped equivalent circuits of magnetic components: the gyrator-capacitor approach. IEEE Transactions on Power Electronics vol. 8 97–103 (1993) – 10.1109/63.223957
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Itoh, T. & Abe, K. Hamiltonian-conserving discrete canonical equations based on variational difference quotients. Journal of Computational Physics vol. 76 85–102 (1988) – 10.1016/0021-9991(88)90132-5
- Quispel, G. R. W. & Turner, G. S. Discrete gradient methods for solving ODEs numerically while preserving a first integral. Journal of Physics A: Mathematical and General vol. 29 L341–L349 (1996) – 10.1088/0305-4470/29/13/006
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 357 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Budd, Geometric integration and its applications. Handb. Numer. Anal. (2003)
- Lambert, (1973)