Parabolic matching of hyperbolic system using Control by Interconnection
Authors
N.M. Trang Vu, V. Trenchant, H. Ramirez, L. Lefèvre, Y. Le Gorrec
Abstract
The structural difference between one-dimensional (1D) hyperbolic and parabolic port Hamiltonian system (PHS) is discussed. Then, using a Control by Interconnection (CbI) approach, a distributed state feedback is designed in order to transform an hyperbolic PHS into a parabolic one, the latter being asymptotically stable and even purely dissipative (with no oscillating modes). Distributed wave damping in 1D vibro-acoustic pipes, using piezo actuators, is considered as an illustration example for the proposed control design.
Keywords
Port Hamiltonian systems (PHS); distributed parameters systems (DPS); Control by Interconnection (CbI); feedback equivalence with distributed control; Interconnection; Damping Assignment Passivity Based Control (IDA-PBC)
Citation
- Journal: IFAC-PapersOnLine
- Year: 2017
- Volume: 50
- Issue: 1
- Pages: 5574–5579
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2017.08.1101
- Note: 20th IFAC World Congress
BibTeX
@article{Trang_Vu_2017,
title={{Parabolic matching of hyperbolic system using Control by Interconnection}},
volume={50},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2017.08.1101},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Trang Vu, N.M. and Trenchant, V. and Ramirez, H. and Lefèvre, L. and Le Gorrec, Y.},
year={2017},
pages={5574--5579}
}
References
- Collet, M., David, P. & Berthillier, M. Active acoustical impedance using distributed electrodynamical transducers. The Journal of the Acoustical Society of America vol. 125 882–894 (2009) – 10.1121/1.3026329
- Le Gorrec, Y., Peng, H., Lefèvre, L., Hamroun, B. & Couenne, F. Systèmes hamiltoniens à ports de dimension infinie. Réduction et propriétés spectrales. Journal Européen des Systèmes Automatisés vol. 45 645–664 (2011) – 10.3166/jesa.45.645-664
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3768-3773 Vol.4 (2004) doi:10.1109/cdc.2004.1429325 – 10.1109/cdc.2004.1429325
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Boundary L<inf>2</inf>-gain stabilisation of a distributed Port-Hamiltonian system with rectangular domain. 2015 54th IEEE Conference on Decision and Control (CDC) 1236–1241 (2015) doi:10.1109/cdc.2015.7402380 – 10.1109/cdc.2015.7402380
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Trenchant, V., Fares, Y., Ramirez, H. & Le Gorrec, Y. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC-PapersOnLine vol. 48 235–240 (2015) – 10.1016/j.ifacol.2015.10.245
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Trang VU, N. M., LEFÈVRE, L. & NOUAILLETAS, R. Distributed and backstepping boundary controls to achieve IDA-PBC design. IFAC-PapersOnLine vol. 48 482–487 (2015) – 10.1016/j.ifacol.2015.05.034