Stability Analysis of Nonlinear Repetitive Control Schemes
Authors
Federico Califano, Michelangelo Bin, Alessandro Macchelli, Claudio Melchiorri
Abstract
This letter deals with nonlinear repetitive control (RC), a technique used to reject periodic disturbances with a known and constant period. Since RC systems are defined over a state space of infinite dimension, the main theoretical problem that makes nonlinear case not trivial resides in the lack of adequate mathematical tools to study well-posedness of the closed-loop system and regularity of the solutions. Here, the stability analysis relies on recent results about the boundary control of infinite-dimensional port-Hamiltonian systems via nonlinear regulators, and the major contribution is the definition of a class of nonlinear plants for which a RC scheme is, at first, well-posed, and then exponentially stable. Moreover, an explicit proof of perfect local asymptotic tracking and disturbance rejection for exponentially stable RC systems is provided.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2018
- Volume: 2
- Issue: 4
- Pages: 773–778
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2018.2849617
BibTeX
@article{Califano_2018,
title={{Stability Analysis of Nonlinear Repetitive Control Schemes}},
volume={2},
ISSN={2475-1456},
DOI={10.1109/lcsys.2018.2849617},
number={4},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Califano, Federico and Bin, Michelangelo and Macchelli, Alessandro and Melchiorri, Claudio},
year={2018},
pages={773--778}
}
References
- Ghosh, J. & Paden, B. Nonlinear repetitive control. IEEE Trans. Automat. Contr. 45, 949–954 (2000) – 10.1109/9.855558
- Lin, Y. H., Chung, C. C. & Hung, T. H. On Robust Stability of Nonlinear Repetitive Control System : Factorization Approach. 1991 American Control Conference 2646–2647 (1991) doi:10.23919/acc.1991.4791879 – 10.23919/acc.1991.4791879
- Owens, D. H., Li, L. M. & Banks, S. P. Multi-periodic repetitive control system: a Lyapunov stability analysis for MIMO systems. International Journal of Control 77, 504–515 (2004) – 10.1080/00207170410001682533
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica 85, 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Tucsnak, M. & Weiss, G. Well-posed systems—The LTI case and beyond. Automatica 50, 1757–1779 (2014) – 10.1016/j.automatica.2014.04.016
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Califano, F., Macchelli, A. & Melchiorri, C. Stability analysis of repetitive control: The port-Hamiltonian approach. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 1894–1899 (2017) doi:10.1109/cdc.2017.8263926 – 10.1109/cdc.2017.8263926
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Hara, S., Yamamoto, Y., Omata, T. & Nakano, M. Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans. Automat. Contr. 33, 659–668 (1988) – 10.1109/9.1274
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754