Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach
Authors
Said Aoues, Flavio Luiz Cardoso-Ribeiro, Denis Matignon, Daniel Alazard
Abstract
In this brief, we develop a mathematical model of a flexible spacecraft system composed of a hub and two symmetrical beams using the port-Hamiltonian framework. This class of system has favorable properties, such as passivity for controller synthesis and stability analysis, where the global Hamiltonian plays the role of a Lyapunov function candidate. The spacecraft model is viewed as a power-conserving interconnection between an infinite (beam) and finite (hub) dimensional system. We show that the interconnection result has a port-Hamiltonian structure and is passive. The introduction of a nonlinear feedback term, which takes into account the beam’s flexibility, is developed using the control by an interconnection approach. The closed-loop stability is proven; then, through explicitly solving the partial differential equations of the system, asymptotic stability is obtained. Finally, the experimental results are carried out to assess the validity of the proposed design methodology.
Citation
- Journal: IEEE Transactions on Control Systems Technology
- Year: 2019
- Volume: 27
- Issue: 1
- Pages: 355–362
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tcst.2017.2771244
BibTeX
@article{Aoues_2019,
title={{Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach}},
volume={27},
ISSN={2374-0159},
DOI={10.1109/tcst.2017.2771244},
number={1},
journal={IEEE Transactions on Control Systems Technology},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Aoues, Said and Cardoso-Ribeiro, Flavio Luiz and Matignon, Denis and Alazard, Daniel},
year={2019},
pages={355--362}
}
References
- Kelemen, M. & Bagchi, A. Modeling and feedback control of a flexible arm of a robot for prescribed frequency-domain tolerances. Automatica vol. 29 899–909 (1993) – 10.1016/0005-1098(93)90095-b
- Ki-Seok Kim & Youdan Kim. Robust backstepping control for slew maneuver using nonlinear tracking function. IEEE Transactions on Control Systems Technology vol. 11 822–829 (2003) – 10.1109/tcst.2003.815608
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- maschke, Port-controlled Hamiltonian systems: Modelling origins and systemtheoretic properties. IFAC Syst Control Lett (1992)
- maschke, Canonical interdomain coupling in distributed parameter systems: An extension of the symplectic gyrator. Proc ASME Int Mech Eng Congr Expo (2001)
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Sidi, M. J. Spacecraft Dynamics and Control. (1997) doi:10.1017/cbo9780511815652 – 10.1017/cbo9780511815652
- Singh, S. N. Rotational maneuver of nonlinear uncertain elastic spacecraft. IEEE Transactions on Aerospace and Electronic Systems vol. 24 114–123 (1988) – 10.1109/7.1044
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Ben-Asher, J., Burns, J. A. & Cliff, E. M. Time-optimal slewing of flexible spacecraft. Journal of Guidance, Control, and Dynamics vol. 15 360–367 (1992) – 10.2514/3.20844
- Garcia–Canseco, E., Pasumarthy, R., van der Schaft, A. & Ortega, R. ON CONTROL BY INTERCONNECTION OF PORT HAMILTONIAN SYSTEMS. IFAC Proceedings Volumes vol. 38 330–335 (2005) – 10.3182/20050703-6-cz-1902.00709
- Elgohary, T. A., Turner, J. D. & Junkins, J. L. Analytic Transfer Functions for the Dynamics & Control of Flexible Rotating Spacecraft Performing Large Angle Maneuvers. The Journal of the Astronautical Sciences vol. 62 168–195 (2015) – 10.1007/s40295-015-0038-0
- Junkins, J. L. & Bang, H. Maneuver and vibration control of hybrid coordinate systems using Lyapunov stability theory. Journal of Guidance, Control, and Dynamics vol. 16 668–676 (1993) – 10.2514/3.21066
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- aoues, Control of flexible spacecraft using IDA-PBC design. Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control (2015)
- Alazard, D. & Bouttes, R. BAMOSS: An experimental tested for flexible structure dynamics modeling and control. 2009 European Control Conference (ECC) 1167–1172 (2009) doi:10.23919/ecc.2009.7074563 – 10.23919/ecc.2009.7074563
- Karray, F., Grewal, A., Glaum, M. & Modi, V. Stiffening control of a class of nonlinear affine systems. IEEE Transactions on Aerospace and Electronic Systems vol. 33 473–484 (1997) – 10.1109/7.575886
- wang, Modelling and Control of Smart Material Flexible Manipulators (2008)
- Zhu, W. D. & Mote, C. D., Jr. Dynamic Modeling and Optimal Control of Rotating Euler-Bernoulli Beams. Journal of Dynamic Systems, Measurement, and Control vol. 119 802–808 (1997) – 10.1115/1.2802393