Hamiltonian perspective on compartmental reaction–diffusion networks
Authors
Marko Seslija, Arjan van der Schaft, Jacquelien M.A. Scherpen
Abstract
Inspired by the recent developments in modeling and analysis of reaction networks, we provide a geometric formulation of the reversible reaction networks under the influence of diffusion. Using the graph knowledge of the underlying reaction network, the obtained reaction–diffusion system is a distributed-parameter port-Hamiltonian system on a compact spatial domain. Motivated by the need for computer-based design, we offer a spatially consistent discretization of the PDE system and, in a systematic manner, recover a compartmental ODE model on a simplicial triangulation of the spatial domain. Exploring the properties of a balanced weighted Laplacian matrix of the reaction network and the Laplacian of the simplicial complex, we characterize the space of equilibrium points and provide a simple stability analysis on the state space modulo the space of equilibrium points. The paper rules out the possibility of the persistence of spatial patterns for the compartmental balanced reaction–diffusion networks.
Keywords
Reaction networks; Reaction–diffusion systems; Distributed-parameter systems; Structure-preserving discretization; Weighted Laplacian matrix; Interconnection; Consensus
Citation
- Journal: Automatica
- Year: 2014
- Volume: 50
- Issue: 3
- Pages: 737–746
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2013.12.017
BibTeX
@article{Seslija_2014,
title={{Hamiltonian perspective on compartmental reaction–diffusion networks}},
volume={50},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2013.12.017},
number={3},
journal={Automatica},
publisher={Elsevier BV},
author={Seslija, Marko and van der Schaft, Arjan and Scherpen, Jacquelien M.A.},
year={2014},
pages={737--746}
}
References
- Anderson, D. F. A Proof of the Global Attractor Conjecture in the Single Linkage Class Case. SIAM Journal on Applied Mathematics vol. 71 1487–1508 (2011) – 10.1137/11082631x
- Arcak, M. Certifying spatially uniform behavior in reaction–diffusion PDE and compartmental ODE systems. Automatica vol. 47 1219–1229 (2011) – 10.1016/j.automatica.2011.01.010
- Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society vol. 47 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature vol. 434 1130–1134 (2005) – 10.1038/nature03461
- Berg, (2007)
- Cortés, J. Distributed algorithms for reaching consensus on general functions. Automatica vol. 44 726–737 (2008) – 10.1016/j.automatica.2007.07.022
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Bond graph for dynamic modelling in chemical engineering. Chemical Engineering and Processing: Process Intensification vol. 47 1994–2003 (2008) – 10.1016/j.cep.2007.09.006
- Feinberg, M. Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chemical Engineering Science vol. 42 2229–2268 (1987) – 10.1016/0009-2509(87)80099-4
- Feinberg, M. The existence and uniqueness of steady states for a class of chemical reaction networks. Archive for Rational Mechanics and Analysis vol. 132 311–370 (1995) – 10.1007/bf00375614
- Fitzgibbon, W. B., Hollis, S. L. & Morgan, J. J. Stability and Lyapunov Functions for Reaction-Diffusion Systems. SIAM Journal on Mathematical Analysis vol. 28 595–610 (1997) – 10.1137/s0036141094272241
- Horn, F. Necessary and sufficient conditions for complex balancing in chemical kinetics. Archive for Rational Mechanics and Analysis vol. 49 172–186 (1972) – 10.1007/bf00255664
- Horn, F. & Jackson, R. General mass action kinetics. Archive for Rational Mechanics and Analysis vol. 47 81–116 (1972) – 10.1007/bf00251225
- Jacquez, (1972)
- Jovanović, A passivity-based approach to stability of spatially distributed systems with a cyclic interconnection structure. IEEE Transactions on Circuits and Systems (2008)
- Morgan, J. Global Existence for Semilinear Parabolic Systems on One-dimensional Bounded Domains. Rocky Mountain Journal of Mathematics vol. 21 (1991) – 10.1216/rmjm/1181072963
- Murray, (2003)
- Nicolis, (1977)
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice vol. 19 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE vol. 95 215–233 (2007) – 10.1109/jproc.2006.887293
- Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Archive for Rational Mechanics and Analysis vol. 55 230–274 (1974) – 10.1007/bf00281751
- Oster, G. F., Perelson, A. S. & Katchalsky, A. Network thermodynamics: dynamic modelling of biophysical systems. Quarterly Reviews of Biophysics vol. 6 1–134 (1973) – 10.1017/s0033583500000081
- Rao, S., van der Schaft, A., van Eunen, K., Bakker, B. M. & Jayawardhana, B. Model-order reduction of biochemical reaction networks. 2013 European Control Conference (ECC) 4502–4507 (2013) doi:10.23919/ecc.2013.6669587 – 10.23919/ecc.2013.6669587
- Seslija, Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems. Automatica (2012)
- Seslija, Reaction–diffusion in the port-Hamiltonian framework. (2010)
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Smoller, (1994)
- Sontag, E. D. Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Transactions on Automatic Control vol. 46 1028–1047 (2001) – 10.1109/9.935056
- Temam, (1997)
- Turing, The chemical basis of morphogenesis. Philosophical Trasactions of Royal Society of London. Series B: Biological Sciences (1952)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, Conservation laws and lumped system dynamics. (2009)
- van der Schaft, A., Rao, S. & Jayawardhana, B. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics. SIAM Journal on Applied Mathematics vol. 73 953–973 (2013) – 10.1137/11085431x