Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators
Authors
Markus Schöberl, Andreas Siuka
Abstract
We consider infinite-dimensional port-Hamiltonian systems described on jet bundles. Based on a power balance relation we introduce the port-Hamiltonian system representation using differential operators regarding the structural mapping, the dissipation mapping and the input mapping. In contrast to the well-known representation on the basis of the underlying Stokes–Dirac structure our approach is not necessarily based on using energy-variables which leads to a different port-Hamiltonian representation of the analyzed partial differential equations. The presented constructions will be specialized to mechanical systems to which class also the presented examples belong.
Keywords
Port-Hamiltonian systems; Differential geometry; Infinite-dimensional systems; Partial differential equations; System theory
Citation
- Journal: Automatica
- Year: 2014
- Volume: 50
- Issue: 2
- Pages: 607–613
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2013.11.035
BibTeX
@article{Sch_berl_2014,
title={{Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators}},
volume={50},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2013.11.035},
number={2},
journal={Automatica},
publisher={Elsevier BV},
author={Schöberl, Markus and Siuka, Andreas},
year={2014},
pages={607--613}
}
References
- Curtain, (1995)
- Ennsbrunner, H. & Schlacher, K. On the geometrical representation and interconnection of infinite dimensional port controlled Hamiltonian systems. Proceedings of the 44th IEEE Conference on Decision and Control 5263–5268 doi:10.1109/cdc.2005.1582998 – 10.1109/cdc.2005.1582998
- Eringen, (1990)
- Giachetta, (1997)
- Macchelli, A. & Melchiorri, C. Control by Interconnection and Energy Shaping of the Timoshenko Beam. Mathematical and Computer Modelling of Dynamical Systems vol. 10 231–251 (2004) – 10.1080/13873950412331335243
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems I. Modeling. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3762-3767 Vol.4 (2004) doi:10.1109/cdc.2004.1429324 – 10.1109/cdc.2004.1429324
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3768-3773 Vol.4 (2004) doi:10.1109/cdc.2004.1429325 – 10.1109/cdc.2004.1429325
- Marsden, (1994)
- Maschke, B. & van der Schaft, A. 4 Compositional Modelling of Distributed-Parameter Systems. Lecture Notes in Control and Information Sciences 115–154 (2005) doi:10.1007/11334774_4 – 10.1007/11334774_4
- Meirovitch, (1997)
- Olver, (1986)
- Schlacher, K. Mathematical modeling for nonlinear control: a Hamiltonian approach. Mathematics and Computers in Simulation vol. 79 829–849 (2008) – 10.1016/j.matcom.2008.02.011
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Schöberl, M. & Siuka, A. On the port-Hamiltonian representation of systems described by partial differential equations. IFAC Proceedings Volumes vol. 45 1–6 (2012) – 10.3182/20120829-3-it-4022.00001
- Schoberl, M. & Siuka, A. Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. 2013 European Control Conference (ECC) 548–553 (2013) doi:10.23919/ecc.2013.6669137 – 10.23919/ecc.2013.6669137
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3