Structure Preserving Finite Differences in Polar Coordinates for Heat and Wave Equations.
Authors
Vincent Trenchant, Weiwei Hu, Hector Ramirez, Yann Le Gorrec
Abstract
This paper proposes a finite difference spatial discretization that preserves the geometrical structure, i.e. the Dirac structure, underlying 2D heat and wave equations in cylindrical coordinates. These equations are shown to rely on Dirac structures for a particular set of boundary conditions. The discretization is completed with time integration based on Stormer-Verlet method.
Keywords
Distributed port-Hamiltonian systems; staggered grids; finite difference method; wave equation; heat equation
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 2
- Pages: 571–576
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.03.096
- Note: 9th Vienna International Conference on Mathematical Modelling
BibTeX
@article{Trenchant_2018,
title={{Structure Preserving Finite Differences in Polar Coordinates for Heat and Wave Equations.}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.03.096},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Trenchant, Vincent and Hu, Weiwei and Ramirez, Hector and Gorrec, Yann Le},
year={2018},
pages={571--576}
}
References
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Duindam, (2009)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Hairer, (2006)
- ISERLES, A. Generalized Leapfrog Methods. IMA Journal of Numerical Analysis vol. 6 381–392 (1986) – 10.1093/imanum/6.4.381
- Kotyczka, Finite volume structure-preserving discretization of 1d distributed-parameter port-hamiltonian systems. In Proc. 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations, Bertinoro, Italy (2016)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Trenchant, V., Fares, Y., Ramirez, H. & Le Gorrec, Y. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC-PapersOnLine vol. 48 235–240 (2015) – 10.1016/j.ifacol.2015.10.245
- Trenchant, Structure preserving spatial discretization of 2d hyperbolic systems using staggered grids finite difference. In American Control Conference (ACC) (2017)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3