Authors

W. Zhou, B. Hamroun, Y. Le Gorrec, F. Couenne

Abstract

In this paper is proposed a thermodynamically consistent port Hamiltonian formulation of non isothermal reaction diffusion processes. The use of appropriate thermodynamic variables for the definition of the state and the co-state vectors allows to highlight the inherent infinite dimensional interconnection structure linking the different thermodynamic phenomena (entropy production, diffusion, conduction) that is suitable for control purposes. The presentation is given for systems defined on one dimensional spatial domain.

Keywords

Port Hamiltonian Systems; Distributed Systems; Irreversible Thermodynamics

Citation

  • Journal: IFAC-PapersOnLine
  • Year: 2015
  • Volume: 48
  • Issue: 1
  • Pages: 476–481
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ifacol.2015.05.119
  • Note: 8th Vienna International Conferenceon Mathematical Modelling- MATHMOD 2015

BibTeX

@article{Zhou_2015,
  title={{Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes}},
  volume={48},
  ISSN={2405-8963},
  DOI={10.1016/j.ifacol.2015.05.119},
  number={1},
  journal={IFAC-PapersOnLine},
  publisher={Elsevier BV},
  author={Zhou, W. and Hamroun, B. and Gorrec, Y. Le and Couenne, F.},
  year={2015},
  pages={476--481}
}

Download the bib file

References