Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes
Authors
W. Zhou, B. Hamroun, Y. Le Gorrec, F. Couenne
Abstract
In this paper is proposed a thermodynamically consistent port Hamiltonian formulation of non isothermal reaction diffusion processes. The use of appropriate thermodynamic variables for the definition of the state and the co-state vectors allows to highlight the inherent infinite dimensional interconnection structure linking the different thermodynamic phenomena (entropy production, diffusion, conduction) that is suitable for control purposes. The presentation is given for systems defined on one dimensional spatial domain.
Keywords
Port Hamiltonian Systems; Distributed Systems; Irreversible Thermodynamics
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 1
- Pages: 476–481
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.05.119
- Note: 8th Vienna International Conferenceon Mathematical Modelling- MATHMOD 2015
BibTeX
@article{Zhou_2015,
title={{Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.05.119},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Zhou, W. and Hamroun, B. and Gorrec, Y. Le and Couenne, F.},
year={2015},
pages={476--481}
}
References
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Bird, (2002)
- Callen, (1985)
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Structured modeling for processes: A thermodynamical network theory. Computers & Chemical Engineering vol. 32 1120–1134 (2008) – 10.1016/j.compchemeng.2007.04.012
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dorfman, (1993)
- Duindam, (2009)
- de Groot, (1983)
- Eberard, An extension of port Hamiltonian systems to irreversible systems. (2004)
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Jacob, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces. Operator Theory: Advances and Applications (2012)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. (1992)
- Maschke, Hamiltonian representation of distributed parameter systems with boundary energy flow. (2000)
- Maschke, B. & van der Schaft, A. 4 Compositional Modelling of Distributed-Parameter Systems. Lecture Notes in Control and Information Sciences 115–154 (2005) doi:10.1007/11334774_4 – 10.1007/11334774_4
- Ruszkowski, M., Garcia‐Osorio, V. & Ydstie, B. E. Passivity based control of transport reaction systems. AIChE Journal vol. 51 3147–3166 (2005) – 10.1002/aic.10543
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Zhou, W., Hamroun, B., Le Gorrec, Y. & Couenne, F. Infinite Dimensional Port Hamiltonian Representation of Chemical Reactors. IFAC Proceedings Volumes vol. 45 248–253 (2012) – 10.3182/20120829-3-it-4022.00036