Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation
Authors
Yann Le Gorrec, Denis Matignon
Abstract
The aim of this paper is to study a conservative wave equation coupled to a diffusion equation. This coupled system naturally arises in musical acoustics when viscous and thermal effects at the wall of the duct of a wind instrument are taken into account. The resulting equation, known as the Webster–Lokshin model, has variable coefficients in space, and a fractional derivative in time. This equation can be recast into the port Hamiltonian framework by using the diffusive representation of the fractional derivative in time and a multiscale state space representation. The port-Hamiltonian formalism proves adequate to reformulate this coupled system, and could enable another well-posedness analysis, using classical results from port-Hamiltonian systems theory.
Keywords
Energy storage; Port-Hamiltonian systems; Partial differential equations; Fractional derivatives; Diffusive representation
Citation
- Journal: European Journal of Control
- Year: 2013
- Volume: 19
- Issue: 6
- Pages: 505–512
- Publisher: Elsevier BV
- DOI: 10.1016/j.ejcon.2013.09.003
- Note: Lagrangian and Hamiltonian Methods for Modelling and Control
BibTeX
@article{Le_Gorrec_2013,
title={{Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation}},
volume={19},
ISSN={0947-3580},
DOI={10.1016/j.ejcon.2013.09.003},
number={6},
journal={European Journal of Control},
publisher={Elsevier BV},
author={Le Gorrec, Yann and Matignon, Denis},
year={2013},
pages={505--512}
}
References
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Blanc, E., Chiavassa, G. & Lombard, B. Biot-JKD model: Simulation of 1D transient poroelastic waves with fractional derivatives. Journal of Computational Physics vol. 237 1–20 (2013) – 10.1016/j.jcp.2012.12.003
- Bruneau, M., Herzog, Ph., Kergomard, J. & Polack, J. D. General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries. Wave Motion vol. 11 441–451 (1989) – 10.1016/0165-2125(89)90018-8
- Deü, J.-F. & Matignon, D. Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme. Computers & Mathematics with Applications vol. 59 1745–1753 (2010) – 10.1016/j.camwa.2009.08.067
- (2009)
- Haddar, H., Li, J.-R. & Matignon, D. Efficient solution of a wave equation with fractional-order dissipative terms. Journal of Computational and Applied Mathematics vol. 234 2003–2010 (2010) – 10.1016/j.cam.2009.08.051
- HÉLIE, TH. & MATIGNON, D. DIFFUSIVE REPRESENTATIONS FOR THE ANALYSIS AND SIMULATION OF FLARED ACOUSTIC PIPES WITH VISCO-THERMAL LOSSES. Mathematical Models and Methods in Applied Sciences vol. 16 503–536 (2006) – 10.1142/s0218202506001248
- Hu, W., Deng, Z., Han, S. & Zhang, W. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. Journal of Computational Physics vol. 235 394–406 (2013) – 10.1016/j.jcp.2012.10.032
- Jacob, (2012)
- Kergomard, J., Lafarge, D. & Gilbert, J. Transients in Porous Media: Exact and Modelled Time-Domain Green’s Functions. Acta Acustica united with Acustica vol. 99 557–571 (2013) – 10.3813/aaa.918635
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Gorrec, Y., Maschke, B., Villegas, J. A. & Zwart, H. Dissipative boundary control systems with application to distributed parameters reactors. 2006 IEEE International Conference on Control Applications 668–673 (2006) doi:10.1109/cca.2006.285949 – 10.1109/cca.2006.285949
- Leimkuhler, (2004)
- Matignon, (2009)
- Matignon, D. Diffusive representations for fractional Laplacian: systems theory framework and numerical issues. Physica Scripta vol. T136 014009 (2009) – 10.1088/0031-8949/2009/t136/014009
- Matignon, D. & Prieur, C. Asymptotic stability of linear conservative systems when coupled with diffusive systems. ESAIM: Control, Optimisation and Calculus of Variations vol. 11 487–507 (2005) – 10.1051/cocv:2005016
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Polack, Time domain solution of Kirchhoff’s equation for sound propagation in viscothermal gases. Journal of Acoustique (1991)
- van der Schaft, (2004)
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036
- Zwart, H., Le Gorrec, Y. & Maschke, B. Linking hyperbolic and parabolic p.d.e.’s. IEEE Conference on Decision and Control and European Control Conference 4921–4924 (2011) doi:10.1109/cdc.2011.6160422 – 10.1109/cdc.2011.6160422