Distributed and backstepping boundary controls for port-Hamiltonian systems with symmetries
Authors
Ngoc Minh Trang Vu, Laurent Lefèvre, Rémy Nouailletas
Abstract
A geometric spatial reduction for the port-Hamiltonian models is presented in this paper. It is based on the projection which makes use of the symmetries and on the preservation of the ‘natural’ power pairing for the considered system. Thanks to this reduction, an Interconnection and Damping Assignment Passivity Based Control (IDA-PBC-like) synthesis for infinite dimensional port-Hamiltonian systems is investigated. As for the finite dimensional case, a feedback control transforms the original model into a closed-loop target Hamiltonian model. Both distributed control and boundary control are used. The finite rank distributed control is determined to solve an average IDA-PBC matching equation. A backstepping boundary control is used to stabilize the matching error. The control model chosen to illustrate the approach is the so-called resistive diffusion equation for the radial diffusion of the poloidal magnetic flux.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2017
- Volume: 23
- Issue: 1
- Pages: 55–76
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2016.1232280
BibTeX
@article{Vu_2016,
title={{Distributed and backstepping boundary controls for port-Hamiltonian systems with symmetries}},
volume={23},
ISSN={1744-5051},
DOI={10.1080/13873954.2016.1232280},
number={1},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Vu, Ngoc Minh Trang and Lefèvre, Laurent and Nouailletas, Rémy},
year={2016},
pages={55--76}
}
References
- Zwart H., ESAIM Control Optim. Calc. Var. (2009)
- Maschke, B. & van der Schaft, A. 4 Compositional Modelling of Distributed-Parameter Systems. Lecture Notes in Control and Information Sciences 115–154 (2005) doi:10.1007/11334774_4 – 10.1007/11334774_4
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega R., Eur. J. Control (2003)
- Wesson J., Tokamaks (2004)
- Argomedo F.B., IEEE Trans. Autom. Control (2012)
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Blum J., Numerical Simulation and Optimal Control in Plasma Physics (1989)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Vu T.N.M., IFAC Workshop Thermodyn. Found. Math. Sys. Theory, IFAC Proceedings Volumes 46 (14) (2013)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Swaters G.E., Introduction to Hamiltonian Fluid Dynamics and Stability Theory (2000)
- Felici, F. et al. Real-time physics-model-based simulation of the current density profile in tokamak plasmas. Nuclear Fusion vol. 51 083052 (2011) – 10.1088/0029-5515/51/8/083052
- Minh Trang Vu, N. & Lefèvre, L. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations & Control Theory vol. 4 205–220 (2015) – 10.3934/eect.2015.4.205