Energy shaping of boundary controlled linear port Hamiltonian systems
Authors
Yann Le Gorrec, Alessandro Macchelli, Hector Ramirez, Hans Zwart
Abstract
In this paper, we consider the asymptotic stabilization of a class of one dimensional boundary controlled port Hamiltonian systems by an immersion/reduction approach and the use of Casimir invariants. We first extend existing results on asymptotic stability of linear infinite dimensional systems controlled at their boundary to the case of stable Port Hamiltonian controllers including some physical constraints as clamping. Then the relation between structural invariants, namely Casimir functions, and the controller structure is computed. The Casimirs are employed in the selection of the controllers Hamiltonian to shape the total energy function of the closed loop system and introduce a minimum in the desired equilibrium configuration. The approach is illustrated on the model of a micro manipulation process with partial-actuation on one side of the spatial domain.
Keywords
Infinite dimensional port Hamiltonian systems; asymptotic stability; immersion reduction control design
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2014
- Volume: 47
- Issue: 3
- Pages: 1580–1585
- Publisher: Elsevier BV
- DOI: 10.3182/20140824-6-za-1003.01966
- Note: 19th IFAC World Congress
BibTeX
@article{Gorrec_2014,
title={{Energy shaping of boundary controlled linear port Hamiltonian systems}},
volume={47},
ISSN={1474-6670},
DOI={10.3182/20140824-6-za-1003.01966},
number={3},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Gorrec, Yann Le and Macchelli, Alessandro and Ramirez, Hector and Zwart, Hans},
year={2014},
pages={1580--1585}
}
References
- Boudaoud, M., Haddab, Y. & Le Gorrec, Y. Modeling and Optimal Force Control of a Nonlinear Electrostatic Microgripper. IEEE/ASME Trans. Mechatron. 18, 1130–1139 (2013) – 10.1109/tmech.2012.2197216
- Jacob, (2012)
- John, F. Partial Differential Equations. Applied Mathematical Sciences (Springer US, 1978). doi:10.1007/978-1-4684-0059-5 – 10.1007/978-1-4684-0059-5
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Macchelli, Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach. (2009)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, Putting energy back in control. Control Systems Magazine (2001)
- Ramirez, H. & Le Gorrec, Y. Boundary port Hamiltonian control of a class of nanotweezers. 2013 European Control Conference (ECC) 566–571 (2013) doi:10.23919/ecc.2013.6669834 – 10.23919/ecc.2013.6669834
- Ramirez, H. & Le Gorrec, Y. Exponential stability of a class of PDE’s with dynamic boundary control. 2013 American Control Conference 3290–3295 (2013) doi:10.1109/acc.2013.6580339 – 10.1109/acc.2013.6580339
- van der Schaft, Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. (2004)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Willems, Dissipative dynamical systems Part II: Linear systems with quadratic supply rate (1972)