A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach
Authors
Ramkrishna Pasumarthy, Arjan van der Schaft
Abstract
We look into the problem of approximating a distributed parameter port-Hamiltonian system which is represented by a non-constant Stokes-Dirac structure. We here employ the idea where we use different finite elements for the approximation of geometric variables (forms) describing an infinite-dimensional system, to spatially discretize the system and obtain a finite-dimensional port-Hamiltonian system. In particular we take the example of a special case of the shallow water equations
Citation
- Journal: Proceedings of the 45th IEEE Conference on Decision and Control
- Year: 2006
- Volume:
- Issue:
- Pages: 3984–3989
- Publisher: IEEE
- DOI: 10.1109/cdc.2006.377022
BibTeX
@inproceedings{Pasumarthy_2006,
title={{A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach}},
DOI={10.1109/cdc.2006.377022},
booktitle={{Proceedings of the 45th IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Pasumarthy, Ramkrishna and van der Schaft, Arjan},
year={2006},
pages={3984--3989}
}
References
- pasumarthy, On interconnections of infinite dimensional port-Hamiltonian systems. Proceedings 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2004) (2004)
- (0)
- (0)
- Van der Schaft, A. J. & Maschke, B. M. Fluid dynamical systems as Hamiltonian boundary control systems. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 5 4497–4502 – 10.1109/cdc.2001.980911
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- (0)
- pedlosky, Geophysical Fluid Dynamics (1986)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7