Authors

Ngoc Minh Trang Vu, Laurent Lefèvre

Abstract

A port-Hamiltonian model is derived for the thermo-magneto-hydrodynamics (TMHD) of plasma in tokamaks. This paper focuses on the balance and closure equations in the material domain. First a kinetic theory point of view is adopted and transport equations are derived from the Boltzmann equation. Then material derivatives are introduced to derive macroscopic balance equations of the TMHD fluid model from these kinetic transport equations. Finally, the Gibbs-Duhem equation is used to compute the irreversible entropy source term and to define the interdomain ℛ - field of the model.

Keywords

plasma dynamics; port Hamiltonian systems; thermo-magneto-hydrodynamics; distributed parameters systems; kinetic theory; thermodynamics

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2013
  • Volume: 46
  • Issue: 14
  • Pages: 60–65
  • Publisher: Elsevier BV
  • DOI: 10.3182/20130714-3-fr-4040.00006
  • Note: 1st IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory

BibTeX

@article{Vu_2013,
  title={{Material balance and closure equations for plasmas in Tokamaks}},
  volume={46},
  ISSN={1474-6670},
  DOI={10.3182/20130714-3-fr-4040.00006},
  number={14},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={Vu, Ngoc Minh Trang and Lefèvre, Laurent},
  year={2013},
  pages={60--65}
}

Download the bib file

References

  • Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering vol. 20 S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
  • Bao, Passivity Based Control of Process Networks. Proceedings of the 8th IFAC Symposium on Dynamics and Control of Process Systems, Cancún, Mexico (2007)
  • Dashkovskiy, S. N., Rüffer, B. S. & Wirth, F. R. Small Gain Theorems for Large Scale Systems and Construction of ISS Lyapunov Functions. SIAM Journal on Control and Optimization vol. 48 4089–4118 (2010) – 10.1137/090746483
  • Duan, Z., Huang, L., Wang, L. & Wang, J. Some applications of small gain theorem to interconnected systems. Systems & Control Letters vol. 52 263–273 (2004) – 10.1016/j.sysconle.2004.02.004
  • Hangos, K. M., Alonso, A. A., Perkins, J. D. & Ydstie, B. E. Thermodynamic approach to the structural stability of process plants. AIChE Journal vol. 45 802–816 (1999) – 10.1002/aic.690450414
  • Hioe, D., Bao, J. & Ydstie, B. E. Dissipativity analysis for networks of process systems. Computers & Chemical Engineering vol. 50 207–219 (2013) – 10.1016/j.compchemeng.2012.11.010
  • Ionescu, T. C., Fujimoto, K. & Scherpen, J. M. A. Dissipativity preserving balancing for nonlinear systems — A Hankel operator approach. Systems & Control Letters vol. 59 180–194 (2010) – 10.1016/j.sysconle.2010.01.003
  • Kojima, A Generalized Lyapunov Stability Theorem for Discrete-time Systems based on Quadratic Difference Forms. (2005)
  • Luyben, W. L. Snowball effects in reactor/separator processes with recycle. Industrial & Engineering Chemistry Research vol. 33 299–305 (1994) – 10.1021/ie00026a019
  • Moylan, P. & Hill, D. Stability criteria for large-scale systems. IEEE Transactions on Automatic Control vol. 23 143–149 (1978) – 10.1109/tac.1978.1101721
  • Pendharkar, I. & Pillai, H. K. A parametrisation for dissipative behaviours–the matrix case. International Journal of Control vol. 82 1006–1017 (2009) – 10.1080/00207170802342800
  • Scorletti, G. & Duc, G. An LMI approach to dencentralized H8 control. International Journal of Control vol. 74 211–224 (2001) – 10.1080/00207170010001966
  • Stefanovski, J. Discrete J-spectral factorization of possibly singular polynomial matrices. Systems & Control Letters vol. 53 127–140 (2004) – 10.1016/j.sysconle.2004.03.001
  • Tippett, M. J. & Bao, J. Dissipativity based distributed control synthesis. Journal of Process Control vol. 23 755–766 (2013) – 10.1016/j.jprocont.2013.03.004
  • Tippett, M. J. & Bao, J. Distributed model predictive control based on dissipativity. AIChE Journal vol. 59 787–804 (2012) – 10.1002/aic.13868
  • Tippett, Dissipativity Based Analysis Using Dynamic Supply Rates. Proceedings of the 18th IFAC World Congress, Milano, Italy (2011)
  • Trentelman, H. L., Minh, H. B. & Rapisarda, P. Dissipativity preserving model reduction by retention of trajectories of minimal dissipation. Mathematics of Control, Signals, and Systems vol. 21 171–201 (2009) – 10.1007/s00498-009-0043-6
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
  • Willems, J. C. & Trentelman, H. L. On Quadratic Differential Forms. SIAM Journal on Control and Optimization vol. 36 1703–1749 (1998) – 10.1137/s0363012996303062
  • Xu, S. & Bao, J. Control of Chemical Processes via Output Feedback Controller Networks. Industrial & Engineering Chemistry Research vol. 49 7421–7445 (2010) – 10.1021/ie901768q
  • Ydstie, B. E. New vistas for process control: Integrating physics and communication networks. AIChE Journal vol. 48 422–426 (2002) – 10.1002/aic.690480302