Hamiltonian discretization of boundary control systems
Authors
Goran Golo, Viswanath Talasila, Arjan van der Schaft, Bernhard Maschke
Abstract
A fundamental problem in the simulation and control of complex physical systems containing distributed-parameter components concerns finite-dimensional approximation. Numerical methods for partial differential equations (PDEs) usually assume the boundary conditions to be given, while more often than not the interaction of the distributed-parameter components with the other components takes place precisely via the boundary. On the other hand, finite-dimensional approximation methods for infinite-dimensional input–output systems (e.g., in semi-group format) are not easily relatable to numerical techniques for solving PDEs, and are mainly confined to linear PDEs. In this paper we take a new view on this problem by proposing a method for spatial discretization of boundary control systems based on a particular type of mixed finite elements, resulting in a finite-dimensional input–output system. The approach is based on formulating the distributed-parameter component as an infinite-dimensional port-Hamiltonian system, and exploiting the geometric structure of this representation for the choice of appropriate mixed finite elements. The spatially discretized system is again a port-Hamiltonian system, which can be treated as an approximating lumped-parameter physical system of the same type. In the current paper this program is carried out for the case of an ideal transmission line described by the telegrapher’s equations, and for the two-dimensional wave equation.
Keywords
Boundary control; Spatial discretization; Finite elements; Port-Hamiltonian systems
Citation
- Journal: Automatica
- Year: 2004
- Volume: 40
- Issue: 5
- Pages: 757–771
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2003.12.017
BibTeX
@article{Golo_2004,
title={{Hamiltonian discretization of boundary control systems}},
volume={40},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2003.12.017},
number={5},
journal={Automatica},
publisher={Elsevier BV},
author={Golo, Goran and Talasila, Viswanath and van der Schaft, Arjan and Maschke, Bernhard},
year={2004},
pages={757--771}
}
References
- Bossavit, Differential forms and the computation of fields and forces in electromagnetism. European Journal of Mechanics, B/Fluids (1991)
- Bossavit, (1998)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Dorfman, (1993)
- Golo, G., van der Schaft, A. & Stramigioli, S. Hamiltonian Formulation of Planar Beams. IFAC Proceedings Volumes vol. 36 147–152 (2003) – 10.1016/s1474-6670(17)38882-1
- Golo, G., Talasila, V. & van der Schaft, A. J. Approximation of the Telegrapher’s equations. Proceedings of the 41st IEEE Conference on Decision and Control, 2002. vol. 4 4587–4592 – 10.1109/cdc.2002.1185099
- Maschke, B. M. J. & van der Schaft, A. J. Port Controlled Hamiltonian Representation of Distributed Parameter Systems. IFAC Proceedings Volumes vol. 33 27–37 (2000) – 10.1016/s1474-6670(17)35543-x
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Olver, (1993)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, (2000)
- van der Schaft, Implicit port-controlled Hamiltonian systems. Journal of Society of Instrument and Control Engineers of Japan (2000)
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv fur Electronik und Ubertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3