On the feedforward control problem for discretized port-Hamiltonian systems
Authors
Abstract
The boundary feedforward control problem for a class of distributed-parameter port-Hamiltonian systems in one spatial dimension is addressed. The considered hyperbolic systems of two conservation laws (with dissipation) are discretized in the spatial coordinate using an energy-based, structure preserving discretization scheme. The resulting finite-dimensional approximate state representation has a feedthrough term which allows to directly express the differential equation for the inverse dynamics. The inverse system needs to be solved in order to determine the control inputs for given desired output trajectories. For non-collocated pairs of boundary in- and outputs the magnitude of dissipation determines whether the inverse discretized models are stable or not. In the unstable case, the problem at hand can be attacked with classical approaches for the dynamic inversion of non-minimum phase systems.
Keywords
Infinite-dimensional systems; port-Hamiltonian systems; structure preserving discretization; dynamic inversion
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2014
- Volume: 47
- Issue: 3
- Pages: 652–658
- Publisher: Elsevier BV
- DOI: 10.3182/20140824-6-za-1003.00796
- Note: 19th IFAC World Congress
BibTeX
@article{Kotyczka_2014,
title={{On the feedforward control problem for discretized port-Hamiltonian systems}},
volume={47},
ISSN={1474-6670},
DOI={10.3182/20140824-6-za-1003.00796},
number={3},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Kotyczka, Paul},
year={2014},
pages={652--658}
}
References
- CHEN, D. & PADEN, B. Stable inversion of nonlinear non-minimum phase systems. International Journal of Control 64, 81–97 (1996) – 10.1080/00207179608921618
- Devasia, S., Degang Chen & Paden, B. Nonlinear inversion-based output tracking. IEEE Trans. Automat. Contr. 41, 930–942 (1996) – 10.1109/9.508898
- Farle, O., Klis, D., Jochum, M., Floch, O. & Dyczij-Edlinger, R. A port-hamiltonian finite-element formulation for the maxwell equations. 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) 324–327 (2013) doi:10.1109/iceaa.2013.6632246 – 10.1109/iceaa.2013.6632246
- Fliess, M., Martin, P., Petit, N. & Rouchon, P. Active signal restoration for the telegraph equation. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1107–1111 – 10.1109/cdc.1999.830075
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Graichen, K., Hagenmeyer, V. & Zeitz, M. A new approach to inversion-based feedforward control design for nonlinear systems. Automatica 41, 2033–2041 (2005) – 10.1016/j.automatica.2005.06.008
- Knuppel, T., Woittennek, F. & Rudolph, J. Flatness-based trajectory planning for the shallow water equations. 49th IEEE Conference on Decision and Control (CDC) 2960–2965 (2010) doi:10.1109/cdc.2010.5717438 – 10.1109/cdc.2010.5717438
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics 231, 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Pasumarthy, R. & van der Schaft, A. A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach. Proceedings of the 45th IEEE Conference on Decision and Control 3984–3989 (2006) doi:10.1109/cdc.2006.377022 – 10.1109/cdc.2006.377022
- Schmuck, C., Woittennek, F., Gensior, A. & Rudolph, J. Feed-Forward Control of an HVDC Power Transmission Network. IEEE Trans. Contr. Syst. Technol. 22, 597–606 (2014) – 10.1109/tcst.2013.2253322
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- van der Schaft, (2000)
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3