Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators
Authors
Y. Le Gorrec, H. Zwart, B. Maschke
Abstract
Associated with a skew-symmetric linear operator on the spatial domain \( [a,b] \) we define a Dirac structure which includes the port variables on the boundary of this spatial domain. This Dirac structure is a subspace of a Hilbert space. Naturally, associated with this Dirac structure is an infinite-dimensional system. We parameterize the boundary port variables for which the \( C_{0} \)-semigroup associated with this system is contractive or unitary. Furthermore, this parameterization is used to split the boundary port variables into inputs and outputs. Similarly, we define a linear port controlled Hamiltonian system associated with the previously defined Dirac structure and a symmetric positive operator defining the energy of the system. We illustrate this theory on the example of the Timoshenko beam.
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2005
- Volume: 44
- Issue: 5
- Pages: 1864–1892
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/040611677
BibTeX
@article{Le_Gorrec_2005,
title={{Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators}},
volume={44},
ISSN={1095-7138},
DOI={10.1137/040611677},
number={5},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Le Gorrec, Y. and Zwart, H. and Maschke, B.},
year={2005},
pages={1864--1892}
}
References
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Dorfman Irene, Dirac structures and integrability of nonlinear evolution equations (1993)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Parsian, A. & Deh Abad, A. S. Dirac structures on Hilbert spaces. International Journal of Mathematics and Mathematical Sciences vol. 22 97–108 (1999) – 10.1155/s0161171299220972
- Phillips, R. S. Dissipative operators and hyperbolic systems of partial differential equations. Transactions of the American Mathematical Society vol. 90 193–254 (1959) – 10.1090/s0002-9947-1959-0104919-1
- Pillai, H. K. & Willems, J. C. Lossless and Dissipative Distributed Systems. SIAM Journal on Control and Optimization vol. 40 1406–1430 (2002) – 10.1137/s0363012900368028
- Staffans, O. Well-Posed Linear Systems. (2005) doi:10.1017/cbo9780511543197 – 10.1017/cbo9780511543197
- van der Schaft A. J., Archiv. Elektronik Übertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3