Port-Hamiltonian discretization for open channel flows
Authors
R. Pasumarthy, V.R. Ambati, A.J. van der Schaft
Abstract
A finite-dimensional Port-Hamiltonian formulation for the dynamics of smooth open channel flows is presented. A numerical scheme based on this formulation is developed for both the linear and nonlinear shallow water equations. The scheme is verified against exact solutions and has the advantage of conservation of mass and energy to the discrete level.
Keywords
Shallow water equations; Port-Hamiltonian; Stokes–Dirac structure; Numerical discretization
Citation
- Journal: Systems & Control Letters
- Year: 2012
- Volume: 61
- Issue: 9
- Pages: 950–958
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2012.05.003
BibTeX
@article{Pasumarthy_2012,
title={{Port-Hamiltonian discretization for open channel flows}},
volume={61},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2012.05.003},
number={9},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Pasumarthy, R. and Ambati, V.R. and van der Schaft, A.J.},
year={2012},
pages={950--958}
}
References
- van der Schaft, (2000)
- Olver, (1993)
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Pasumarthy, R. & van der Schaft, A. A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach. Proceedings of the 45th IEEE Conference on Decision and Control 3984–3989 (2006) doi:10.1109/cdc.2006.377022 – 10.1109/cdc.2006.377022
- Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R. & Perthame, B. A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows. SIAM Journal on Scientific Computing vol. 25 2050–2065 (2004) – 10.1137/s1064827503431090
- Audusse, E. & Bristeau, M.-O. A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes. Journal of Computational Physics vol. 206 311–333 (2005) – 10.1016/j.jcp.2004.12.016
- Ambati, V. R. & Bokhove, O. Space–time discontinuous Galerkin finite element method for shallow water flows. Journal of Computational and Applied Mathematics vol. 204 452–462 (2007) – 10.1016/j.cam.2006.01.047
- Ambati, V. R. & Bokhove, O. Space–time discontinuous Galerkin discretization of rotating shallow water equations. Journal of Computational Physics vol. 225 1233–1261 (2007) – 10.1016/j.jcp.2007.01.036
- Tassi, P. A., Bokhove, O. & Vionnet, C. A. Space discontinuous Galerkin method for shallow water flows—kinetic and HLLC flux, and potential vorticity generation. Advances in Water Resources vol. 30 998–1015 (2007) – 10.1016/j.advwatres.2006.09.003
- Bokhove, O. & Oliver, M. Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 462 2575–2592 (2006) – 10.1098/rspa.2006.1656
- Frank, J. & Reich, S. The Hamiltonian particle‐mesh method for the spherical shallow water equations. Atmospheric Science Letters vol. 5 89–95 (2004) – 10.1002/asl.70
- Morrison, P. J. Hamiltonian description of the ideal fluid. Reviews of Modern Physics vol. 70 467–521 (1998) – 10.1103/revmodphys.70.467
- Maschke, B. M. J. & van der Schaft, A. J. Port Controlled Hamiltonian Representation of Distributed Parameter Systems. IFAC Proceedings Volumes vol. 33 27–37 (2000) – 10.1016/s1474-6670(17)35543-x
- Abraham, (1988)
- Hairer, (2006)
- Houghton, D. D. & Kasahara, A. Nonlinear shallow fluid flow over an isolated ridge. Communications on Pure and Applied Mathematics vol. 21 1–23 (1968) – 10.1002/cpa.3160210103