Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems
Authors
Paul Kotyczka, Bernhard Maschke, Laurent Lefèvre
Abstract
We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes–Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes–Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.
Keywords
Systems of conservation laws with boundary energy flows; Port-Hamiltonian systems; Mixed Galerkin methods; Geometric spatial discretization; Structure-preserving discretization
Citation
- Journal: Journal of Computational Physics
- Year: 2018
- Volume: 361
- Issue:
- Pages: 442–476
- Publisher: Elsevier BV
- DOI: 10.1016/j.jcp.2018.02.006
BibTeX
@article{Kotyczka_2018,
title={{Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems}},
volume={361},
ISSN={0021-9991},
DOI={10.1016/j.jcp.2018.02.006},
journal={Journal of Computational Physics},
publisher={Elsevier BV},
author={Kotyczka, Paul and Maschke, Bernhard and Lefèvre, Laurent},
year={2018},
pages={442--476}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Duindam, (2009)
- Jacob, (2012)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Zwart, H., Le Gorrec, Y. & Maschke, B. Building systems from simple hyperbolic ones. Systems & Control Letters vol. 91 1–6 (2016) – 10.1016/j.sysconle.2016.02.002
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Nishida, G., Maschke, B. & Ikeura, R. Boundary Integrability of Multiple Stokes–Dirac Structures. SIAM Journal on Control and Optimization vol. 53 800–815 (2015) – 10.1137/110856058
- Bochev, Principles of mimetic discretizations of differential operators. (2006)
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Seslija, M., Scherpen, J. M. A. & van der Schaft, A. Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems. Automatica vol. 50 369–377 (2014) – 10.1016/j.automatica.2013.11.020
- Desbrun, Discrete differential forms for computational modeling. (2008)
- Kotyczka, P. & Maschke, B. Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. at - Automatisierungstechnik vol. 65 308–322 (2017) – 10.1515/auto-2016-0098
- Kotyczka, P. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 49 298–303 (2016) – 10.1016/j.ifacol.2016.07.457
- Trenchant, Structure preserving spatial discretization of 2D hyperbolic systems using staggered grids finite difference. (2017)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Vu, N. M. T., Lefèvre, L., Nouailletas, R. & Brémond, S. Symplectic spatial integration schemes for systems of balance equations. Journal of Process Control vol. 51 1–17 (2017) – 10.1016/j.jprocont.2016.12.005
- Farle, A port-Hamiltonian finite-element formulation for the Maxwell equations. (2013)
- Quarteroni, (1994)
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Flanders, (1963)
- Bossavit, Differential forms and the computation of fields and forces in electromagnetism. Eur. J. Mech. B (1991)
- Bossavit, (1998)
- Tonti, A direct discrete formulation of field laws: the cell method. Comput. Model. Eng. Sci. (2001)
- Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society vol. 47 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
- Whitney, (1957)
- Rapetti, F. & Bossavit, A. Whitney Forms of Higher Degree. SIAM Journal on Numerical Analysis vol. 47 2369–2386 (2009) – 10.1137/070705489
- Hiemstra, R. R., Toshniwal, D., Huijsmans, R. H. M. & Gerritsma, M. I. High order geometric methods with exact conservation properties. Journal of Computational Physics vol. 257 1444–1471 (2014) – 10.1016/j.jcp.2013.09.027
- Cotter, C. J. & Shipton, J. Mixed finite elements for numerical weather prediction. Journal of Computational Physics vol. 231 7076–7091 (2012) – 10.1016/j.jcp.2012.05.020
- Cotter, C. J. & Thuburn, J. A finite element exterior calculus framework for the rotating shallow-water equations. Journal of Computational Physics vol. 257 1506–1526 (2014) – 10.1016/j.jcp.2013.10.008
- Hecht, New development in FreeFem++. J. Numer. Math. (2012)
- Geuzaine, C. GetDP: a general finite‐element solver for the de Rham complex. PAMM vol. 7 1010603–1010604 (2007) – 10.1002/pamm.200700750
- Alnæs, The fenics project version 1.5. Arch. Numer. Softw. (2015)
- Arnold, (1989)
- Arnold, Spaces of finite element differential forms. (2013)
- Holm, (2011)
- Brezis, (2011)
- Kato, (1995)
- Paynter, (1961)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- van der Schaft, (2000)
- Golo, (2002)
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Fernández-Nieto, E. D., Marin, J. & Monnier, J. Coupling superposed 1D and 2D shallow-water models: Source terms in finite volume schemes. Computers & Fluids vol. 39 1070–1082 (2010) – 10.1016/j.compfluid.2010.01.016
- Bird, (2002)
- Arakawa, A. & Lamb, V. R. A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations. Monthly Weather Review vol. 109 18–36 (1981) – 10.1175/1520-0493(1981)109<0018:apeaec>2.0.co;2
- Ringler, T. D., Thuburn, J., Klemp, J. B. & Skamarock, W. C. A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. Journal of Computational Physics vol. 229 3065–3090 (2010) – 10.1016/j.jcp.2009.12.007
- Abraham, (2012)
- Pasumarthy, Port-Hamiltonian formulation of shallow water equations with Coriolis force and topography. (2008)
- Trang VU, N. M., LEFEVRE, L. & MASCHKE, B. Port-Hamiltonian formulation for systems of conservation laws: application to plasma dynamics in Tokamak reactors. IFAC Proceedings Volumes vol. 45 108–113 (2012) – 10.3182/20120829-3-it-4022.00016
- Zhou, W., Hamroun, B., Couenne, F. & Le Gorrec, Y. Distributed port-Hamiltonian modelling for irreversible processes. Mathematical and Computer Modelling of Dynamical Systems vol. 23 3–22 (2016) – 10.1080/13873954.2016.1237970
- Polner, M. & van der Vegt, J. J. W. A Hamiltonian vorticity–dilatation formulation of the compressible Euler equations. Nonlinear Analysis: Theory, Methods & Applications vol. 109 113–135 (2014) – 10.1016/j.na.2014.07.005
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control vol. 36 1228–1240 (1991) – 10.1109/9.100932
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part II: Variational structures. Journal of Geometry and Physics vol. 57 209–250 (2006) – 10.1016/j.geomphys.2006.02.012
- Vankerschaver,
- Morrison, P. J. Hamiltonian description of the ideal fluid. Reviews of Modern Physics vol. 70 467–521 (1998) – 10.1103/revmodphys.70.467
- Camassa, On variational formulations and conservation laws for incompressible 2D Euler fluids. J. Phys.: Conf. Ser. (2014)
- Bossavit, A. How weak is the ‘weak solution’ in finite element methods? IEEE Transactions on Magnetics vol. 34 2429–2432 (1998) – 10.1109/20.717558
- Hesthaven, (2007)
- Kreeft, J. & Gerritsma, M. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution. Journal of Computational Physics vol. 240 284–309 (2013) – 10.1016/j.jcp.2012.10.043
- Brezzi, (1991)
- van der Schaft,
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Bossavit, A. Generating Whitney forms of polynomial degree one and higher. IEEE Transactions on Magnetics vol. 38 341–344 (2002) – 10.1109/20.996092
- Bossavit, A. & Kettunen, L. Yee-like schemes on a tetrahedral mesh, with diagonal lumping. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields vol. 12 129–142 (1999) – 10.1002/(sici)1099-1204(199901/04)12:1/2<129::aid-jnm327>3.0.co;2-g
- Specogna, R. One Stroke Complementarity for Poisson-Like Problems. IEEE Transactions on Magnetics vol. 51 1–4 (2015) – 10.1109/tmag.2014.2358264
- Hamroun, (2009)
- Christiansen, Upwinding in finite element systems of differential forms. (2013)