Infinite Dimensional Port Hamiltonian Representation of Chemical Reactors
Authors
W. Zhou, B. Hamroun, Y. Le Gorrec, F. Couenne
Abstract
Infinite dimensional Port Hamiltonian representation of non isothermal chemical reactors is proposed in the case of mass transport diffusion and chemical reaction without convection. The proposed approach uses thermodynamic variables. The presentation is given for one dimensional spatial domain by using the internal energy and the opposite of the entropy as hamiltonian functions.
Keywords
Port Hamiltonian Systems; Distributed Systems; Irreversible Thermodynamics
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2012
- Volume: 45
- Issue: 19
- Pages: 248–253
- Publisher: Elsevier BV
- DOI: 10.3182/20120829-3-it-4022.00036
- Note: 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control
BibTeX
@article{Zhou_2012,
title={{Infinite Dimensional Port Hamiltonian Representation of Chemical Reactors}},
volume={45},
ISSN={1474-6670},
DOI={10.3182/20120829-3-it-4022.00036},
number={19},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Zhou, W. and Hamroun, B. and Le Gorrec, Y. and Couenne, F.},
year={2012},
pages={248--253}
}
References
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control 19, 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Bird, (2002)
- Callen, (1985)
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Structured modeling for processes: A thermodynamical network theory. Computers & Chemical Engineering 32, 1120–1134 (2008) – 10.1016/j.compchemeng.2007.04.012
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dorfman, (1993)
- Glansdorff, (1971)
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21, 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Maschke, B. & van der Schaft, A. 4 Compositional Modelling of Distributed-Parameter Systems. Lecture Notes in Control and Information Sciences 115–154 (2005) doi:10.1007/11334774_4 – 10.1007/11334774_4
- Ruszkowski, M., Garcia‐Osorio, V. & Ydstie, B. E. Passivity based control of transport reaction systems. AIChE Journal 51, 3147–3166 (2005) – 10.1002/aic.10543
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3