Geometric pseudospectral method for spatial integration of dynamical systems
Authors
Redha Moulla, Laurent Lefèvre, Bernhard Maschke
Abstract
A reduction method that preserves geometric structure and energetic properties of non-linear distributed parameter systems is presented. It is stated as a general pseudospectral method using approximation spaces generated by polynomials bases. It applies to Hamiltonian formulations of distributed parameter systems that may be derived for hyperbolic systems (wave equation, beam model, shallow water model) as well as for parabolic ones (heat or diffusion equations, reaction–diffusion models). It is defined in order to preserve the geometric symplectic interconnection structure (Stokes–Dirac structure) of the infinite-dimensional model by performing exact differentiation and by a suitable choice of port variables. This leads to a reduced port-controlled Hamiltonian finite-dimensional system of ordinary differential equations. Moreover, the stored and dissipated power in the reduced model are approximations of the distributed ones. The method thus allows the direct use of thermodynamics phenomenological constitutive equations for the design of passivity-based or energy-shaping control techniques.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2011
- Volume: 17
- Issue: 1
- Pages: 85–104
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2010.537524
BibTeX
@article{Moulla_2011,
title={{Geometric pseudospectral method for spatial integration of dynamical systems}},
volume={17},
ISSN={1744-5051},
DOI={10.1080/13873954.2010.537524},
number={1},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Moulla, Redha and Lefèvre, Laurent and Maschke, Bernhard},
year={2011},
pages={85--104}
}
References
- Karnopp D., System Dynamics: Modeling and Simulation of Mechatronic Systems (2006)
- Stramigioli S., Volume 266: Lecture Notes in Control and Information Science (2001)
- Kugi A., Volume 260: Lecture Notes in Control and Information Science (2000)
- Stramigioli S., Modeling and Control of Complex Physical Systems–The Port-Hamiltonian Approach (2009)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Macchelli A., Modeling and control of the Timoshenko beam : the distributed port Hamiltonian approach (2004)
- Hamroun H., Port-based modelling for open channel irrigation systems (2006)
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Nishida, G., Takagi, K., Maschke, B. & Luo, Z. Multi-Scale Distributed Port-Hamiltonian Representation of Ionic Polymer-Metal Composite. IFAC Proceedings Volumes vol. 41 2300–2305 (2008) – 10.3182/20080706-5-kr-1001.00388
- Bossavit A., Computational Electromagnetism (1998)
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Fornberg, B. A Practical Guide to Pseudospectral Methods. (1996) doi:10.1017/cbo9780511626357 – 10.1017/cbo9780511626357
- Ouarit, H., Lefevre, L. & Georges, D. Robust optimal control of one-reach open-channels. 2003 European Control Conference (ECC) 2413–2417 (2003) doi:10.23919/ecc.2003.7085328 – 10.23919/ecc.2003.7085328
- Maschke B., Lecture Notes on Control and Information Sciences (2005)
- van der Schaft A.J., Archiv für Elektronik und Übertragungstechnik, (1995)
- Abraham R., Foundations of Mechanics (1987)
- Golo G., Interconnection structures in port-based modelling: tools for analysis and simulation (2002)
- Serre, D. Systems of Conservation Laws 1. (1999) doi:10.1017/cbo9780511612374 – 10.1017/cbo9780511612374
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Gorrec, Y., Maschke, B., Villegas, J. A. & Zwart, H. Dissipative boundary control systems with application to distributed parameters reactors. 2006 IEEE International Conference on Control Applications 668–673 (2006) doi:10.1109/cca.2006.285949 – 10.1109/cca.2006.285949
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.2307/2001258
- Lefèvre, L., Dochain, D., Feyo de Azevedo, S. & Magnus, A. Optimal selection of orthogonal polynomials applied to the integration of chemical reactor equations by collocation methods. Computers & Chemical Engineering vol. 24 2571–2588 (2000) – 10.1016/s0098-1354(00)00597-4
- Dalsmo M., On representation and integrability of mathematical structures in energy-conserving physical systems, SIAM J. Control Optim. (2008)
- Talasila V., Discrete port-Hamiltonian systems (2006)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Brogliato B., Communications and Control Engineering Series (2007)