On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems
Authors
Alessandro Macchelli, Yann Le Gorrec, Hector Ramirez, Hans Zwart
Abstract
This paper is concerned with the energy shaping of 1-D linear boundary controlled port-Hamiltonian systems. The energy-Casimir method is first proposed to deal with power preserving systems. It is shown how to use finite dimensional dynamic boundary controllers and closed-loop structural invariants to partially shape the closed-loop energy function and how such controller finally reduces to a state feedback. When dissipative port-Hamiltonian systems are considered, the Casimir functions do not exist anymore (dissipation obstacle) and the immersion (via a dynamic controller)/reduction (through invariants) method cannot be applied. The main contribution of this paper is to show how to use the same ideas and state functions to shape the closed-loop energy function of dissipative systems through direct state feedback i.e. without relying on a dynamic controller and a reduction step. In both cases, the existence of solution and the asymptotic stability (by additional damping injection) of the closed-loop system are proven. The general theory and achievable closed-loop performances are illustrated with the help of a concluding example, the boundary stabilization of a longitudinal beam vibrations.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2017
- Volume: 62
- Issue: 4
- Pages: 1700–1713
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2016.2595263
BibTeX
@article{Macchelli_2017,
title={{On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems}},
volume={62},
ISSN={1558-2523},
DOI={10.1109/tac.2016.2595263},
number={4},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Macchelli, Alessandro and Le Gorrec, Yann and Ramirez, Hector and Zwart, Hans},
year={2017},
pages={1700--1713}
}
References
- boje, Proc 19th IFAC World Congr (0)
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- van der schaft, Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- Zhou, W., Hamroun, B., Le Gorrec, Y. & Couenne, F. Infinite Dimensional Port Hamiltonian Representation of Chemical Reactors. IFAC Proceedings Volumes vol. 45 248–253 (2012) – 10.3182/20120829-3-it-4022.00036
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- maschke, Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNLC 2012) Proceedings of the 4th IFAC Workshop on (0)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- macchelli, Boundary energy-shaping control of the shallow water equation. Proc 19th IFAC World Congr (0)
- le gorrec, Energy shaping of boundary controlled linear port Hamiltonian systems. Proc 19th IFAC World Congr (0)
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- golo, Interconnection Structures in Port-Based Modeling Tools for Analysis and Simulation (2002)
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- maschke, Port controlled Hamiltonian systems: Modeling origins and system theoretic properties. Proc 3rd IFAC Symp Control Systems (NOLCOS 1992) (0)
- macchelli, Infinite-Dimensional Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- paynter, Analysis and Design of Engineering Systems (1961)
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Macchelli, A. Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM Journal on Control and Optimization vol. 52 2422–2448 (2014) – 10.1137/130918228
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems (2007)