Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation
Authors
Thomas Voß, Jacquelien M. A. Scherpen
Abstract
In this paper we develop a mathematical model for the dynamics of a nonlinear Timoshenko beam with piezoelectric actuation. This model can then be used to design controllers with the goal of achieving a desired shape of the beam. The control scheme can be used for several applications, e.g., vibration control in structures or shape control for high-precision structures like inflatable space reflectors. The starting point of the control design is modeling for control. We do this in the framework of port-Hamiltonian (pH) modeling, which has favorable properties, such as passivity and a Hamiltonian representing the energy and serving as a Lyapunov function, that can be exploited for controller design. An important property of the pH modeling framework is that it facilitates modeling multiphysics systems or systems which consist of several subsystems, where all parts are modeled separately and then can be interconnected easily. This is possible because any interconnection of finite dimensional pH systems yiel…
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2014
- Volume: 52
- Issue: 1
- Pages: 493–519
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/090774598
BibTeX
@article{Vo__2014,
title={{Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation}},
volume={52},
ISSN={1095-7138},
DOI={10.1137/090774598},
number={1},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Voß, Thomas and Scherpen, Jacquelien M. A.},
year={2014},
pages={493--519}
}
References
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Bond graph for dynamic modelling in chemical engineering. Chemical Engineering and Processing: Process Intensification vol. 47 1994–2003 (2008) – 10.1016/j.cep.2007.09.006
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Golo G., The Netherlands (2002)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control vol. 10 451–468 (2004) – 10.3166/ejc.10.451-468
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Transactions on Robotics vol. 23 650–660 (2007) – 10.1109/tro.2007.898990
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- TRINDADE, M. A., BENJEDDOU, A. & OHAYON, R. PIEZOELECTRIC ACTIVE VIBRATION CONTROL OF DAMPED SANDWICH BEAMS. Journal of Sound and Vibration vol. 246 653–677 (2001) – 10.1006/jsvi.2001.3712
- Van der Schaft A. J., Arch. Elektronik Übertragungstechnik (1995)
- Villegas J. A., Japan (2006)
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Voß T., Orlando, FL (2011)
- Voß, T. & Scherpen, J. M. A. Stabilization and shape control of a 1D piezoelectric Timoshenko beam. Automatica vol. 47 2780–2785 (2011) – 10.1016/j.automatica.2011.09.026
- Voss, T. & Scherpen, J. M. A. Structure Preserving Spatial Discretization of a 1-D Piezoelectric Timoshenko Beam. Multiscale Modeling & Simulation vol. 9 129–154 (2011) – 10.1137/100789038
- Wang Q. S., Smart Mater. Struct. (2010)