On distributed port-hamiltonian process systems
Authors
Ricardo Lopezlena, Jacquelien M.A. Scherpen
Abstract
In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the thermodynamic-passivity properties of PS. Furthermore the systematic methods of control developed for PHS are then expected to be applicable for process systems.
Keywords
Distributed-parameter systems; Process systems; Models; Energy systems; Nonlinear systems
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2004
- Volume: 37
- Issue: 13
- Pages: 973–978
- Publisher: Elsevier BV
- DOI: 10.1016/s1474-6670(17)31352-6
- Note: 6th IFAC Symposium on Nonlinear Control Systems 2004 (NOLCOS 2004), Stuttgart, Germany, 1-3 September, 2004
BibTeX
@article{Lopezlena_2004,
title={{On distributed port-hamiltonian process systems}},
volume={37},
ISSN={1474-6670},
DOI={10.1016/s1474-6670(17)31352-6},
number={13},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Lopezlena, Ricardo and Scherpen, Jacquelien M.A.},
year={2004},
pages={973--978}
}
References
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering 20, S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica 37, 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Clemente-Gallardo, Geometric discretization of fluid dynamics. (2002)
- Golo, (2003)
- Hangos, Hamiltonian view on process systems. A1ChE J (2001)
- Shivamoggi, (1998)
- van der Schaft, Fluid dynamical systems as hamiltonian boundary control systems. (2001)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Ydstie, B. E. Passivity based control via the second law. Computers & Chemical Engineering 26, 1037–1048 (2002) – 10.1016/s0098-1354(02)00041-8
- Ydstie, B. E. & Alonso, A. A. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters 30, 253–264 (1997) – 10.1016/s0167-6911(97)00023-6