Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator
Authors
Gou Nishida, Kentaro Takagi, Bernhard Maschke, Takaaki Osada
Abstract
This paper describes the modeling of a soft actuator called an ionic polymer-metal composite (IPMC) by using distributed port-Hamiltonian (DPH) systems on multiple spatial scales. The multi-scale IPMC structure consists of an electric double layer, an electro-stress diffusion coupling and a flexible beam. The coupling of the structure can be modeled by the DPH systems with unidirectional energy flows on connecting boundaries of the subsystems, and it is called a boundary multi-scale coupling. The boundary multi-scale couplings derived from detailed models can be used for multi-scale retaining interconnections of various reduced models, e.g. numerical models with approximations.
Keywords
Multilevel systems; Bond graphs; Actuators; Distributed parameter systems; Modelling; Boundary integral formulation
Citation
- Journal: Control Engineering Practice
- Year: 2011
- Volume: 19
- Issue: 4
- Pages: 321–334
- Publisher: Elsevier BV
- DOI: 10.1016/j.conengprac.2010.10.005
BibTeX
@article{Nishida_2011,
title={{Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator}},
volume={19},
ISSN={0967-0661},
DOI={10.1016/j.conengprac.2010.10.005},
number={4},
journal={Control Engineering Practice},
publisher={Elsevier BV},
author={Nishida, Gou and Takagi, Kentaro and Maschke, Bernhard and Osada, Takaaki},
year={2011},
pages={321--334}
}
References
- Asaka, K. & Oguro, K. Bending of polyelectrolyte membrane platinum composites by electric stimuli. Journal of Electroanalytical Chemistry vol. 480 186–198 (2000) – 10.1016/s0022-0728(99)00458-1
- Baaiu, A. et al. Port-based modelling of mass transport phenomena. Mathematical and Computer Modelling of Dynamical Systems vol. 15 233–254 (2009) – 10.1080/13873950902808578
- Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition. (2004) doi:10.1117/3.547465 – 10.1117/3.547465
- Bennett, M. D. & Leo, D. J. Ionic liquids as stable solvents for ionic polymer transducers. Sensors and Actuators A: Physical vol. 115 79–90 (2004) – 10.1016/j.sna.2004.03.043
- Gennes, P. G. de, Okumura, K., Shahinpoor, M. & Kim, K. J. Mechanoelectric effects in ionic gels. Europhysics Letters (EPL) vol. 50 513–518 (2000) – 10.1209/epl/i2000-00299-3
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Hamroun, Port-based modelling for open channel irrigation systems. Transaction on Fluid Mechanics (2006)
- Kang, S., Shin, J., Kim, S. J., Kim, H. J. & Kim, Y. H. Robust control of ionic polymer–metal composites. Smart Materials and Structures vol. 16 2457–2463 (2007) – 10.1088/0964-1726/16/6/049
- Kanno, R., Tadokoro, S., Takamori, T., Hattori, M. & Oguro, K. Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator. Proceedings of IEEE International Conference on Robotics and Automation vol. 1 219–225 – 10.1109/robot.1996.503781
- Karnopp, (2006)
- Kothera, C. S. & Leo, D. J. Bandwidth Characterization in the Micropositioning of Ionic Polymer Actuators. Journal of Intelligent Material Systems and Structures vol. 16 3–13 (2005) – 10.1177/1045389x05046310
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Mallavarapu, K. & Leo, D. J. Feedback Control of the Bending Response of Ionic Polymer Actuators. Journal of Intelligent Material Systems and Structures vol. 12 143–155 (2001) – 10.1106/vj5t-9jml-bhv8-m2cg
- Meirovitch, (1986)
- Meirovitch, (1997)
- Mojarrad, M. & Shahinpoor, M. <title>Ion-exchange-metal composite sensor films</title> SPIE Proceedings vol. 3042 52–60 (1997) – 10.1117/12.275724
- Nemat-Nasser, S. & Li, J. Y. Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics vol. 87 3321–3331 (2000) – 10.1063/1.372343
- Newbury, K. M. & Leo, D. J. Linear Electromechanical Model of Ionic Polymer Transducers -Part I: Model Development. Journal of Intelligent Material Systems and Structures vol. 14 333–342 (2003) – 10.1177/1045389x03034976
- Nishida, G., Takagi, K., Maschke, B. & Luo, Z. Multi-Scale Distributed Port-Hamiltonian Representation of Ionic Polymer-Metal Composite. IFAC Proceedings Volumes vol. 41 2300–2305 (2008) – 10.3182/20080706-5-kr-1001.00388
- Gou Nishida & Yamakita, M. Distributed port hamiltonian formulation of flexible beams under large deformations. Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005. 589–594 doi:10.1109/cca.2005.1507190 – 10.1109/cca.2005.1507190
- Onishi, K., Sewa, S., Asaka, K., Fujiwara, N. & Oguro, K. The effects of counter ions on characterization and performance of a solid polymer electrolyte actuator. Electrochimica Acta vol. 46 1233–1241 (2001) – 10.1016/s0013-4686(00)00695-2
- Ortega, (1998)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Richardson, R. C. et al. Control of ionic polymer metal composites. IEEE/ASME Transactions on Mechatronics vol. 8 245–253 (2003) – 10.1109/tmech.2003.812835
- Shahinpoor, M. & Kim, K. J. Ionic polymer-metal composites: I. Fundamentals. Smart Materials and Structures vol. 10 819–833 (2001) – 10.1088/0964-1726/10/4/327
- Simo, J. C. & Vu-Quoc, L. On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I. Journal of Applied Mechanics vol. 53 849–854 (1986) – 10.1115/1.3171870
- Tadokoro, S., Yamagami, S., Takamori, T. & Oguro, K. Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion. SPIE Proceedings vol. 3987 92 (2000) – 10.1117/12.387767
- Takagi, K., Nakabo, Y., Luo, Z.-W. & Asaka, K. On a distributed parameter model for electrical impedance of ionic polymer. SPIE Proceedings vol. 6524 652416 (2007) – 10.1117/12.715554
- Tzou, (1993)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Wallmersperger, Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. Journal of Applied Physics (2007)
- Yamakita, M., Kamamichi, N., Kaneda, Y., Asaka, K. & Luo, Z.-W. Development of an artificial muscle linear actuator using ionic polymer–metal composites. Advanced Robotics vol. 18 383–399 (2004) – 10.1163/156855304773822473
- Yamakita, M., Sera, A., Kamamichi, N., Asaka, K. & Zhi-Wei Luo. Integrated design of IPMC actuator/sensor. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. 1834–1839 doi:10.1109/robot.2006.1641973 – 10.1109/robot.2006.1641973
- Yamaue, T., Mukai, H., Asaka, K. & Doi, M. Electrostress Diffusion Coupling Model for Polyelectrolyte Gels. Macromolecules vol. 38 1349–1356 (2005) – 10.1021/ma047944j
- Yi, B.-J. & Busch-Vishniac, I. Modeling of EAPs as multiple energy domain systems: a bond graph approach. SPIE Proceedings vol. 6168 61681G (2006) – 10.1117/12.657840