A port-Hamiltonian formulation of a 2D boundary controlled acoustic system
Authors
Vincent Trenchant, Yassine Fares, Hector Ramirez, Yann Le Gorrec
Abstract
This paper deals with the port Hamiltonian formulation of a 2D boundary controlled acoustic system. The system under consideration consits of an acoustic wave traveling in a tube equipped with a network of microphones/loudspeakers. The purpose of this smart skin is to damp the acoustic wave and reduce its effect at the output of the tube. It is first commented how the original 3D system can be reduced to a 2D system by considering symmetries. Then, the boundary port variables associated with the wave equation are parametrized in order to define a Dirac structure in two dimensions, compatible with the interconnection at the boundaries with the actuation system. The overall system (wave+actuators/sensors) is finally expressed as a port Hamiltonian control system and a first stabilizing distributed control law is proposed.
Keywords
Distributed Port-Hamiltonian systems; passivity based control; wave propagation
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 13
- Pages: 235–240
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.245
- Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015
BibTeX
@article{Trenchant_2015,
title={{A port-Hamiltonian formulation of a 2D boundary controlled acoustic system}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.245},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Trenchant, Vincent and Fares, Yassine and Ramirez, Hector and Le Gorrec, Yann},
year={2015},
pages={235--240}
}
References
- Collet, M., David, P. & Berthillier, M. Active acoustical impedance using distributed electrodynamical transducers. The Journal of the Acoustical Society of America vol. 125 882–894 (2009) – 10.1121/1.3026329
- Collet, M., Ouisse, M., Ichchou, M. & Ohayon, R. Semi-Active Optimization of 2D Wave’s Dispersion Into Shunted Piezocomposite Systems for Controlling Acoustic Interaction. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1 79–87 (2011) doi:10.1115/smasis2011-5018 – 10.1115/smasis2011-5018
- David, P., Collet, M. & Cote, J.-M. Experimental implementation of acoustic impedance control by a 2D network of distributed smart cells. Smart Materials and Structures vol. 19 035028 (2010) – 10.1088/0964-1726/19/3/035028
- Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1999). Fundamentals of acoustics. Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999., 1.
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. and Maschke, B.M. (2009). Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach, chapter Infinite-Dimensional Port-Hamiltonian Systems, 211-271. Springer-Verlag, Berlin, Germany.
- Maschke, B. and van der Schaft, A. (1992). Port controlled Hamiltonian systems: modeling origins and system the-oretic properties. In Proceedings of the 3rd IFAC Symposium on Nonlinear Control Systems, NOLCOS’92, 282- 288. Bordeaux, France.
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J.A. (2007). A port-Hamiltonian Approach to Distributed Parameter Systems. Ph.D. thesis, Universiteit Twente.