Feedforward control of a channel flow based on a discretized port-Hamiltonian model
Authors
Paul Kotyczka, Antonio Blancato
Abstract
Systems of conservation laws can be modeled (including dissipation) in an elegant, physically insightful way within the port-Hamiltonian framework. A structure-preserving discretization renders the partial differential equations ordinary ones. In this paper, we show how the structure of the lumped-parameter state representation for two conservation laws on a one-dimensional spatial domain can be exploited to easily formulate different (inverse) models. Based thereon, a simple modular procedure for feedforward controller design is developed, using known results from the dynamic inversion of nonminimum-phase systems. The example of the shallow water equations serves to illustrate the design steps and to present simulation results.
Keywords
Distributed-parameter systems; conservation laws; port-Hamiltonian systems; discretization; feedforward control; stable dynamic inversion
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 13
- Pages: 194–199
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.238
- Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015
BibTeX
@article{Kotyczka_2015,
title={{Feedforward control of a channel flow based on a discretized port-Hamiltonian model}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.238},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Kotyczka, Paul and Blancato, Antonio},
year={2015},
pages={194--199}
}
References
- Bassi, An algorithm to discretize one-dimensional distributed port Hamiltonian systems.. (2007)
- Bastin, Boundary control for exact cancellation of boundary disturbances in hyperbolic systems of conservation laws.. (2005)
- Devasia, S., Degang Chen & Paden, B. Nonlinear inversion-based output tracking. IEEE Transactions on Automatic Control vol. 41 930–942 (1996) – 10.1109/9.508898
- Duindam, (2009)
- Farle, O., Baltes, R.-B. & Dyczij-Edlinger, R. Strukturerhaltende Diskretisierung verteilt-parametrischer Port-Hamiltonscher Systeme mittels finiter Elemente. at - Automatisierungstechnik vol. 62 500–511 (2014) – 10.1515/auto-2014-1093
- Golo, Hamiltonian discretization of boundary control systems. Auto-matica (2004)
- Graichen, K., Hagenmeyer, V. & Zeitz, M. A new approach to inversion-based feedforward control design for nonlinear systems. Automatica vol. 41 2033–2041 (2005) – 10.1016/j.automatica.2005.06.008
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Knüppel, Flatness-based trajectory planning for the shallow water equations. (2010)
- Kotyczka, Inversion-based feedforward control for discretized port-Hamiltonian systems. (2014)
- Kotyczka, Discretized models for networks of distributed parameter port-Hamiltonian systems. (2013)
- Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock. waves (1973)
- LeVeque, (1992)
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vu, IDA-PBC control for the coupled plasma poloidal magnetic flux and heat radial diffusion equations in tokamaks.. In World Congress, (2014)