Asymptotic Stabilisation of Distributed Port-Hamiltonian Systems by Boundary Energy-Shaping Control
Authors
Alessandro Macchelli, Yann Le Gorrec, Héctor Ramirez
Abstract
This paper illustrates a general synthesis methodology of asymptotic stabilising, energy-based, boundary control laws, that is applicable to a large class of distributed port- Hamiltonian systems. Similarly to the finite dimensional case, the idea is to design a state feedback law able to perform the energy-shaping task, i.e. able to map the open-loop port- Hamiltonian system into a new one in the same form, but characterised by a new Hamiltonian with a unique and isolated minimum at the equilibrium. Asymptotic stability is then obtained via damping injection on the boundary, and is a consequence of the La Salle’s Invariance Principle in infinite dimensions. The general theory is illustrated with the help of a simple concluding example, i.e. the boundary stabilisation of a transmission line with distributed dissipation.
Keywords
distributed port-Hamiltonian systems; boundary control; energy-shaping control; stability of PDEs
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 1
- Pages: 488–493
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.05.143
- Note: 8th Vienna International Conferenceon Mathematical Modelling- MATHMOD 2015
BibTeX
@article{Macchelli_2015,
title={{Asymptotic Stabilisation of Distributed Port-Hamiltonian Systems by Boundary Energy-Shaping Control}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.05.143},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Macchelli, Alessandro and Gorrec, Yann Le and Ramirez, Héctor},
year={2015},
pages={488--493}
}
References
- Curtain, (1995)
- Duindam, (2009)
- Jacob, (2012)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luo, (1999)
- Macchelli, A. Towards a port-based formulation of macro-economic systems. Journal of the Franklin Institute vol. 351 5235–5249 (2014) – 10.1016/j.jfranklin.2014.09.009
- Macchelli, A. Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM Journal on Control and Optimization vol. 52 2422–2448 (2014) – 10.1137/130918228
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Macchelli, (2009)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. Nonlinear Control Systems (NOL- COS 1992). Proceedings of the 3rd IF AC Symposium on (1992)
- Ortega, Putting energy back in control. Control Systems Magazine, IEEE (2001)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Rodriguez, On stabilization of nonlinear distributed parameter port- controlled Hamiltonian systems via energy shaping. Decision and Control (CDC 2001). Proceedings of the 40th IEEE Conference on (2001)
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- Swaters, (2000)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176