Lagrangian and Port-Hamiltonian formulation for Distributed-parameter systems
Authors
Abstract
In this paper we consider distributed-parameter systems that allow for a Lagrangian or port-Hamiltonian formulation. We will distinguish the case where the Lagrangian or the Hamiltonian depend on derivative variables (jet-variables) of first-order and the case where second-order derivatives appear. This distinction will be important for the correct determination of the boundary conditions in the Lagrangian scenario and for the investigation of possible boundary ports in the Hamiltonian picture. The derivation of the partial differential equations and the boundary terms/ports will be accomplished in a geometric fashion by using the so-called Cartan-form. We visualize our results by mechanical examples such as beams and plates.
Keywords
Differential geometric methods; Lagrangian and Hamiltonian Systems; Partial differential equations
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 1
- Pages: 610–615
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.05.025
- Note: 8th Vienna International Conferenceon Mathematical Modelling- MATHMOD 2015
BibTeX
@article{Sch_berl_2015,
title={{Lagrangian and Port-Hamiltonian formulation for Distributed-parameter systems}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.05.025},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Schöberl, M. and Schlacher, K.},
year={2015},
pages={610--615}
}
References
- Abraham, (1978)
- Ennsbrunner, Infinite-dimensional Euler- Lagrange and Port Hamiltonian Systems (2006)
- Ennsbrunner, On the geometrical representation and interconnection of infinite dimensional port controlled hamiltonian systems. (2005)
- Giachetta, (1997)
- Kugi, (2001)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Meirovitch, (1997)
- Olver, (1986)
- Saunders, (1989)
- Schlacher, K. Mathematical modeling for nonlinear control: a Hamiltonian approach. Mathematics and Computers in Simulation vol. 79 829–849 (2008) – 10.1016/j.matcom.2008.02.011
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Schöberl, Analysis and comparison of port-hamiltonian formulations for field theories - demonstrated by means of the mindlin plate. (2013)
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- van der Schaft, (2000)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3