On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems
Authors
Markus Schoberl, Andreas Siuka
Abstract
We consider infinite-dimensional port-Hamiltonian systems with respect to control issues. In contrast to the well-established representation relying on Stokes-Dirac structures that are based on skew-adjoint differential operators and the use of energy variables, we employ a different port-Hamiltonian framework. Based on this system representation conditions for Casimir functionals will be derived where in this context the variational derivative plays an extraordinary role. Furthermore the coupling of finite- and infinite-dimensional systems will be analyzed in the spirit of the control by interconnection problem.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2013
- Volume: 58
- Issue: 7
- Pages: 1823–1828
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2012.2235739
BibTeX
@article{Schoberl_2013,
title={{On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems}},
volume={58},
ISSN={1558-2523},
DOI={10.1109/tac.2012.2235739},
number={7},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Schoberl, Markus and Siuka, Andreas},
year={2013},
pages={1823--1828}
}
References
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Ennsbrunner, H. & Schlacher, K. On the geometrical representation and interconnection of infinite dimensional port controlled Hamiltonian systems. Proceedings of the 44th IEEE Conference on Decision and Control 5263–5268 doi:10.1109/cdc.2005.1582998 – 10.1109/cdc.2005.1582998
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Schlacher, K. Mathematical modeling for nonlinear control: a Hamiltonian approach. Mathematics and Computers in Simulation vol. 79 829–849 (2008) – 10.1016/j.matcom.2008.02.011
- nishida, Formal distributed port-Hamiltonian representation of field equations. Proc IEEE Conf Decision and Control and european Control Conf (CDC-ECC) (2005)
- Schoberl, M. & Siuka, A. On Casimir functionals for field theories in Port-Hamiltonian description for control purposes. IEEE Conference on Decision and Control and European Control Conference 7759–7764 (2011) doi:10.1109/cdc.2011.6160430 – 10.1109/cdc.2011.6160430
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- Macchelli, A., Melchiorri, C. & Bassi, L. Port-based Modelling and Control of the Mindlin Plate. Proceedings of the 44th IEEE Conference on Decision and Control 5989–5994 doi:10.1109/cdc.2005.1583120 – 10.1109/cdc.2005.1583120
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1986). doi:10.1007/978-1-4684-0274-2 – 10.1007/978-1-4684-0274-2
- Gotay, M. J. A multisymplectic framework for classical field theory and the calculus of variations II: space + time decomposition. Differential Geometry and its Applications vol. 1 375–390 (1991) – 10.1016/0926-2245(91)90014-z
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- maschke, Compositional Modelling of Distributed-Parameter Systems (2005)
- macchelli, Port Hamiltonian formulation of infinite dimensional systems: Part ii boundary control by interconnection. Proc 43rd IEEE Conf Decision and Control (CDC) (2004)
- macchelli, Port Hamiltonian formulation of infinite dimensional systems: Part i modeling. Proc 43rd IEEE Conf Decision and Control (CDC) (2004)
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. New Lagrangian and Hamiltonian Methods in Field Theory. (1997) doi:10.1142/2199 – 10.1142/2199
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3