In this survey we use an operator theoretic approach to infinite‐dimensional systems theory. As this research field is quite rich, we restrict ourselves to the class of infinite‐dimensional linear port‐Hamiltonian systems and we will focus on topics such as well‐posedness, stability and stabilizability. We combine the abstract operator theoretic approach with the more physical approach based on Hamiltonians. This enables us to derive easy verifiable conditions for well‐posedness and stability.
@article{Jacob_2018,title={{An operator theoretic approach to infinite‐dimensional control systems}},volume={41},ISSN={1522-2608},DOI={10.1002/gamm.201800010},number={4},journal={GAMM-Mitteilungen},publisher={Wiley},author={Jacob, Birgit and Zwart, Hans},year={2018}}
Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
Jeltsema, D. & Van Der Schaft, A. J. Lagrangian and Hamiltonian formulation of transmission line systems with boundary energy flow. Reports on Mathematical Physics vol. 63 55–74 (2009) – 10.1016/s0034-4877(09)00009-3
Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036
H. Zwart, Mathematical Control Theory I. IFAC‐PapersOnLine (2016)
R. Rebarber, European Control Conference (ECC) (1997)
Sontag, E. D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control vol. 34 435–443 (1989) – 10.1109/9.28018
Jacob, B., Nabiullin, R., Partington, J. R. & Schwenninger, F. L. Infinite-Dimensional Input-to-State Stability and Orlicz Spaces. SIAM Journal on Control and Optimization vol. 56 868–889 (2018) – 10.1137/16m1099467