Observer-Based State Feedback Controller for a class of Distributed Parameter Systems
Authors
Jesus Toledo, Yongxin Wu, Hector Ramirez, Yann Le Gorrec
Abstract
This paper aims to propose a finite-dimensional observer-based state feedback controller to stabilize a class of boundary controlled system. To this end, we propose to use an early-lumping approach, where the infinite-dimensional port-Hamiltonian system is first discretized using a structure-preserving method. Then, we build a passive observed-based controller using a Linear Matrix Inequality (LMI) and finally, the controller is interconnected with the infinite-dimensional system in a passive way. Due to its passivity and Hamiltonian structure, this observer-based controller can stabilize not only the discretized lumped parameter system but also the original distributed parameter system. This approach avoids the intrinsic drawback of early lumping approach and spillover effects. Finally, the boundary controlled undamped wave equation is used to illustrate the effectiveness of the proposed controller.
Keywords
Port-Hamiltonian Systems (PHS); Boundary Control Systems (BCS); Linear Matrix Inequalities (LMI)
Citation
- Journal: IFAC-PapersOnLine
- Year: 2019
- Volume: 52
- Issue: 2
- Pages: 114–119
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2019.08.020
- Note: 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019- Oaxaca, Mexico, 20–24 May 2019
BibTeX
@article{Toledo_2019,
title={{Observer-Based State Feedback Controller for a class of Distributed Parameter Systems}},
volume={52},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2019.08.020},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Toledo, Jesus and Wu, Yongxin and Ramirez, Hector and Gorrec, Yann Le},
year={2019},
pages={114--119}
}
References
- Biedermann, B., Rosenzweig, P. & Meurer, T. Passivity-Based Observer Design for State Affine Systems Using Interconnection and Damping Assignment. 2018 IEEE Conference on Decision and Control (CDC) 4662–4667 (2018) doi:10.1109/cdc.2018.8619143 – 10.1109/cdc.2018.8619143
- Duindam, (2009)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Jacob, (2012)
- Kalman, Contributions to the theory of optimal control. Bol. soc. mat. mexicana (1960)
- Kotyczka, P. & Mei Wang. Dual observer-based compensator design for linear port-Hamiltonian systems. 2015 European Control Conference (ECC) 2908–2913 (2015) doi:10.1109/ecc.2015.7330979 – 10.1109/ecc.2015.7330979
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luenberger, D. Observers for multivariable systems. IEEE Transactions on Automatic Control vol. 11 190–197 (1966) – 10.1109/tac.1966.1098323
- Luenberger, D. An introduction to observers. IEEE Transactions on Automatic Control vol. 16 596–602 (1971) – 10.1109/tac.1971.1099826
- Luenberger, D. G. Observing the State of a Linear System. IEEE Transactions on Military Electronics vol. 8 74–80 (1964) – 10.1109/tme.1964.4323124
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Prajna, S., van der Schaft, A. & Meinsma, G. An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Systems & Control Letters vol. 45 371–385 (2002) – 10.1016/s0167-6911(01)00195-5
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Shim, Nonlinear observer design via passivation of error dynamics. Au-tomatica (2003)
- Trenchant, Structure preserving spatial discretization of 2d hyperbolic systems using staggered grids finite difference. (2017)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, Port-hamiltonian systems: an introductory survey. Proceedings of the international congress of mathematicians (2006)
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica vol. 46 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine vol. 49 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- Wu, Y., Hamroun, B., Le Gorrec, Y. & Maschke, B. Reduced order LQG control design for port Hamiltonian systems. Automatica vol. 95 86–92 (2018) – 10.1016/j.automatica.2018.05.003