Port-Hamiltonian modelling and energy-based control of the Timoshenko beam
Authors
Andreas Siuka, Markus Schöberl, Kurt Schlacher
Abstract
This contribution deals with the port-Hamiltonian modelling and energy-based control of infinite-dimensional mechanical systems. Motivated by the physical interpretation offered by the port-controlled Hamiltonian system class in the finite-dimensional case, we analyse an extension of this framework to the infinite-dimensional scenario on the basis of the so-called evolutionary approach which is used for the port-Hamiltonian formulation of flexible beams modelled according to the Timoshenko theory. Furthermore, we adapt the well-known control via structural invariants method with respect to the presented port-Hamiltonian description such that this method is applied to the boundary control of the Timoshenko beam.
Keywords
Timoshenko Beam; Dirac Structure; Casimir Function; Timoshenko Theory; Hamiltonian System Class
Citation
- Journal: Acta Mechanica
- Year: 2011
- Volume: 222
- Issue: 1-2
- Pages: 69–89
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00707-011-0510-2
BibTeX
@article{Siuka_2011,
title={{Port-Hamiltonian modelling and energy-based control of the Timoshenko beam: An approach based on structural invariants}},
volume={222},
ISSN={1619-6937},
DOI={10.1007/s00707-011-0510-2},
number={1–2},
journal={Acta Mechanica},
publisher={Springer Science and Business Media LLC},
author={Siuka, Andreas and Schöberl, Markus and Schlacher, Kurt},
year={2011},
pages={69--89}
}
References
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Ennsbrunner, H., Schlacher, K.: On the geometrical representation and interconnection of infinite dimensional port controlled Hamiltonian systems. In: Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, 5263–5268, Seville, Spain (2005)
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. New Lagrangian and Hamiltonian Methods in Field Theory. (1997) doi:10.1142/2199 – 10.1142/2199
- Kim, J. U. & Renardy, Y. Boundary Control of the Timoshenko Beam. SIAM Journal on Control and Optimization vol. 25 1417–1429 (1987) – 10.1137/0325078
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by Interconnection and Energy Shaping of the Timoshenko Beam. Mathematical and Computer Modelling of Dynamical Systems vol. 10 231–251 (2004) – 10.1080/13873950412331335243
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1994). doi:10.1007/978-1-4612-2682-6 – 10.1007/978-1-4612-2682-6
- L. Meirovitch. Meirovitch L.: Principles and Techniques of Vibrations. Prentice Hall, Englewood Cliffs NJ (1997) (1997)
- A.N. Michel. Michel A.N., Hou L., Liu D.: Stability of Dynamical Systems - Continuous, Discontinuous and Disrecte Systems. Birkhäuser, Boston (2008) (2008)
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Saunders, D. J. The Geometry of Jet Bundles. (1989) doi:10.1017/cbo9780511526411 – 10.1017/cbo9780511526411
- Schlacher, K. Mathematical modeling for nonlinear control: a Hamiltonian approach. Mathematics and Computers in Simulation vol. 79 829–849 (2008) – 10.1016/j.matcom.2008.02.011
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Schöberl, M. & Schlacher, K. Covariant formulation of the governing equations of continuum mechanics in an Eulerian description. Journal of Mathematical Physics vol. 48 (2007) – 10.1063/1.2735444
- Schöberl, M. & Schlacher, K. First-order Hamiltonian field theory and mechanics. Mathematical and Computer Modelling of Dynamical Systems vol. 17 105–121 (2011) – 10.1080/13873954.2010.537526
- Siuka, A., Schöberl, M. Schlacher, K.: Hamiltonian evolution equations of inductionless magnetohydrodynamics. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks & Systems, 1889–1896, Budapest, Hungary (2010)
- Stramigioli, S., Maschke, B., van der Schaft, A.J.: Passive output feedback and port interconnection. In: Preprint-Proceedings of the 4th IFAC Nonlinear Control Systems Design Symposium, 613–618, Enschede, Netherlands (1998)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Zhang, C.-G. Boundary feedback stabilization of the undamped Timoshenko beam with both ends free. Journal of Mathematical Analysis and Applications vol. 326 488–499 (2007) – 10.1016/j.jmaa.2006.01.020
- F. Ziegler. Ziegler F.: Mechanics of Solids and Fluids, 2nd edn. Springer, Vienna, New York (1998) (1998)