Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates
Authors
Andrea Brugnoli, Daniel Alazard, Valérie Pommier-Budinger, Denis Matignon
Abstract
The mechanical model of a thin plate with boundary control and observation is presented as a port-Hamiltonian system (PHs 1 1 PHs stands for port-Hamiltonian systems. ), both in vectorial and tensorial forms: the Kirchhoff-Love model of a plate is described by using a Stokes-Dirac structure and this represents a novelty with respect to the existing literature. This formulation is carried out both in vectorial and tensorial forms. Thanks to tensorial calculus, this model is found to mimic the interconnection structure of its one-dimensional counterpart, i.e. the Euler-Bernoulli beam. The Partitioned Finite Element Method (PFEM 2 2 PFEM stands for partitioned finite element method. ) is then extended to obtain a suitable, i.e. structure-preserving, weak form. The discretization procedure, performed on the vectorial formulation, leads to a finite-dimensional port-Hamiltonian system. This part II of the companion paper extends part I, dedicated to the Mindlin model for thick plates. The thin plate model comes along with additional difficulties, because of the higher order of the differential operator under consideration.
Keywords
Port-Hamiltonian systems; Kirchhoff plate; Partitioned Finite Element Method; Geometric spatial discretization; Boundary control
Citation
- Journal: Applied Mathematical Modelling
- Year: 2019
- Volume: 75
- Issue:
- Pages: 961–981
- Publisher: Elsevier BV
- DOI: 10.1016/j.apm.2019.04.036
BibTeX
@article{Brugnoli_2019,
title={{Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates}},
volume={75},
ISSN={0307-904X},
DOI={10.1016/j.apm.2019.04.036},
journal={Applied Mathematical Modelling},
publisher={Elsevier BV},
author={Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis},
year={2019},
pages={961--981}
}
References
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Duindam, (2009)
- Villegas, (2007)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Cardoso-Ribeiro, A structure-preserving Partitioned Finite Element Method for the 2D wave equation. (2018)
- Logg, (2012)
- Homolya, M. & Ham, D. A. A Parallel Edge Orientation Algorithm for Quadrilateral Meshes. SIAM Journal on Scientific Computing vol. 38 S48–S61 (2016) – 10.1137/15m1021325
- Li, R., Wang, B., Li, G. & Tian, B. Hamiltonian system-based analytic modeling of the free rectangular thin plates’ free vibration. Applied Mathematical Modelling vol. 40 984–992 (2016) – 10.1016/j.apm.2015.06.019
- Li, R., Wang, P., Yang, Z., Yang, J. & Tong, L. On new analytic free vibration solutions of rectangular thin cantilever plates in the symplectic space. Applied Mathematical Modelling vol. 53 310–318 (2018) – 10.1016/j.apm.2017.09.011
- Schöberl, Variational principles for different representations of lagrangian and Hamiltonian systems. (2017)
- Schöberl, M. & Schlacher, K. On the extraction of the boundary conditions and the boundary ports in second-order field theories. Journal of Mathematical Physics vol. 59 (2018) – 10.1063/1.5024847
- Grinfeld, (2015)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Aoues, Modeling and control of a rotating flexible spacecraft: a port-Hamiltonian approach. IEEE Trans. Control Syst. Technol. (2017)
- Cook, (2002)
- Timoshenko, Theory of plates and shells. (1959)
- Matignon, D. & Hélie, T. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control vol. 19 486–494 (2013) – 10.1016/j.ejcon.2013.10.003
- Lambourg, C., Chaigne, A. & Matignon, D. Time-domain simulation of damped impacted plates. II. Numerical model and results. The Journal of the Acoustical Society of America vol. 109 1433–1447 (2001) – 10.1121/1.1354201
- Brugnoli, Port-Hamiltonian formulation and symplectic discretization of plate models. Part I : Mindlin model for thick plates. Applied Mathematical Modelling (2018)
- Kurula, The duality between the gradient and divergence operators on bounded Lipschitz domains. Depart. Appl. Math. Univ. Twente Memorandum (2012)
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Kirby, A general approach to transforming finite elements. SMAI J. Comput. Math. (2017)
- Bell, K. A refined triangular plate bending finite element. International Journal for Numerical Methods in Engineering vol. 1 101–122 (1969) – 10.1002/nme.1620010108
- Leissa, A. W. The free vibration of rectangular plates. Journal of Sound and Vibration vol. 31 257–293 (1973) – 10.1016/s0022-460x(73)80371-2
- Lim, C. W., Lü, C. F., Xiang, Y. & Yao, W. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. International Journal of Engineering Science vol. 47 131–140 (2009) – 10.1016/j.ijengsci.2008.08.003
- Kurula, Linear wave systems on N-D spatial domains. Int. J. Control (2015)