Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems
Authors
Marko Seslija, Jacquelien M.A. Scherpen, Arjan van der Schaft
Abstract
Simplicial Dirac structures as finite analogues of the canonical Stokes–Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input–output finite-dimensional port-Hamiltonian systems that emulate the behavior of distributed-parameter port-Hamiltonian systems. This paper elaborates on the matrix representations of simplicial Dirac structures and the resulting port-Hamiltonian systems on simplicial manifolds. Employing these representations, we consider the existence of structural invariants and demonstrate how they pertain to the energy shaping of port-Hamiltonian systems on simplicial manifolds.
Keywords
Port-Hamiltonian systems; Dirac structures; Distributed-parameter systems; Structure-preserving discretization; Discrete geometry
Citation
- Journal: Automatica
- Year: 2014
- Volume: 50
- Issue: 2
- Pages: 369–377
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2013.11.020
BibTeX
@article{Seslija_2014,
title={{Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems}},
volume={50},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2013.11.020},
number={2},
journal={Automatica},
publisher={Elsevier BV},
author={Seslija, Marko and Scherpen, Jacquelien M.A. and van der Schaft, Arjan},
year={2014},
pages={369--377}
}
References
- Bossavit, (1998)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Desbrun, (2002)
- Desbrun, M., Kanso, E. & Tong, Y. Discrete Differential Forms for Computational Modeling. Oberwolfach Seminars 287–324 doi:10.1007/978-3-7643-8621-4_16 – 10.1007/978-3-7643-8621-4_16
- Dorfman, (1993)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Hiptmair, Finite elements in computational electromagnetism. (2002)
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Munkres, (1984)
- Schöberl, M. & Schlacher, K. First-order Hamiltonian field theory and mechanics. Mathematical and Computer Modelling of Dynamical Systems vol. 17 105–121 (2011) – 10.1080/13873954.2010.537526
- Seslija, M., Scherpen, J. M. A. & van der Schaft, A. A discrete exterior approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 7003–7008 (2011) doi:10.1109/cdc.2011.6160579 – 10.1109/cdc.2011.6160579
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- van der Schaft, A. & Schumacher, H. An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences (Springer London, 2000). doi:10.1007/bfb0109998 – 10.1007/bfb0109998
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Voß, T. & Scherpen, J. M. A. Stabilization and shape control of a 1D piezoelectric Timoshenko beam. Automatica vol. 47 2780–2785 (2011) – 10.1016/j.automatica.2011.09.026