Energy-Based Control of Spatially-Discretized Distributed Port-Hamiltonian Systems
Authors
Abstract
The main contribution of this paper is a procedure for the control by energy shaping of high-order port-Hamiltonian systems obtained from the spatial discretization of infinite dimensional dynamics. Beside the intrinsic difficulties related to the large number of state variables, the finite element model is generally given in terms of a Dirac structure and is completely a-causal, which implies that the plant dynamics is not given in standard input-state-output form, but as a set of DAEs. Consequently, the classical energy-Casimir method has to be extended in order to deal with dynamical systems with constraints, usually appearing in the form of Lagrangian multipliers. The general methodology is illustrated with the help of an examples, i.e. an hinged-hinged Timoshenko beam with actuators at both sides.
Keywords
passivity-based control; energy-shaping; port-Hamiltonian system
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2012
- Volume: 45
- Issue: 2
- Pages: 786–791
- Publisher: Elsevier BV
- DOI: 10.3182/20120215-3-at-3016.00139
- Note: 7th Vienna International Conference on Mathematical Modelling
BibTeX
@article{Macchelli_2012,
title={{Energy-Based Control of Spatially-Discretized Distributed Port-Hamiltonian Systems}},
volume={45},
ISSN={1474-6670},
DOI={10.3182/20120215-3-at-3016.00139},
number={2},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Macchelli, Alessandro},
year={2012},
pages={786--791}
}
References
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3