Exponential Stability of a Class of Boundary Control Systems
Authors
Javier Andres Villegas, Hans Zwart, Yann Le Gorrec, Bernhard Maschke
Abstract
We study a class of partial differential equations (with variable coefficients) on a one dimensional spatial domain with control and observation at the boundary. For this class of systems we provide simple tools to check exponential stability. This class is general enough to include models of flexible structures, traveling waves, heat exchangers, and bioreactors among others. The result is based on the use of a generating function (the energy for physical systems) and an inequality condition at the boundary. Furthermore, based on the port Hamiltonian approach, we give a constructive method to reduce this inequality to a simple matrix inequality.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2009
- Volume: 54
- Issue: 1
- Pages: 142–147
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2008.2007176
BibTeX
@article{Villegas_2009,
title={{Exponential Stability of a Class of Boundary Control Systems}},
volume={54},
ISSN={0018-9286},
DOI={10.1109/tac.2008.2007176},
number={1},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Villegas, Javier Andres and Zwart, Hans and Le Gorrec, Yann and Maschke, Bernhard},
year={2009},
pages={142--147}
}
References
- Bensoussan, A., Da Prato, G., Delfour, M. C. & Mitter, S. K. Representation and Control of Infinite Dimensional Systems. Systems & Control: Foundations & Applications (Birkhäuser Boston, 2007). doi:10.1007/978-0-8176-4581-6 – 10.1007/978-0-8176-4581-6
- Komornik, V. & Loreti, P. Fourier Series in Control Theory. Springer Monographs in Mathematics (Springer New York, 2005). doi:10.1007/b139040 – 10.1007/b139040
- komornik, Exact Controllability and Stabilization the Multiplier Method (1994)
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Cox, S. & Zuazua, E. The rate at which energy decays in a string damped at one end. Indiana University Mathematics Journal vol. 44 0–0 (1995) – 10.1512/iumj.1995.44.2001
- villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems (2007)
- villegas, Port representations of the transmission line. Proc IFAC World Congress (2005)
- Xu *, G. Q. Boundary feedback exponential stabilization of a Timoshenko beam with both ends free. International Journal of Control vol. 78 286–297 (2005) – 10.1080/00207170500095148
- Kim, J. U. & Renardy, Y. Boundary Control of the Timoshenko Beam. SIAM Journal on Control and Optimization vol. 25 1417–1429 (1987) – 10.1137/0325078
- Lions, J. L. Optimal Control of Systems Governed by Partial Differential Equations. (Springer Berlin Heidelberg, 1971). doi:10.1007/978-3-642-65024-6 – 10.1007/978-3-642-65024-6
- Balakrishnan, A. V. Boundary control of parabolic equations: L-Q-R theory. Theory of Nonlinear Operators 11–24 (1978) doi:10.1515/9783112573921-002 – 10.1515/9783112573921-002
- Curtain, R. F. & Pritchard, A. J. An Abstract Theory for Unbounded Control Action for Distributed Parameter Systems. SIAM Journal on Control and Optimization vol. 15 566–611 (1977) – 10.1137/0315038
- lasiecka, Control Theory for Partial Differential Equations I-II (2000)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1978). doi:10.1007/bfb0006761 – 10.1007/bfb0006761
- balakrishnan, Applications of Mathematics. Applied Functional Analysis (1976)
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- golo, A Hamiltonian formulation of the Timoshenko beam model. Proc Mechatronics’02 (2002)
- Sano, H. & Kunimatsu, N. On the stability of a linear bioprocess model with recycle loop. IEEE Transactions on Automatic Control vol. 50 1200–1205 (2005) – 10.1109/tac.2005.852555
- Kunimatsu, N. Stability analysis of heat-exchanger equations with boundary feedbacks. IMA Journal of Mathematical Control and Information vol. 15 317–330 (1998) – 10.1093/imamci/15.4.317
- Zhang, C.-G. Boundary feedback stabilization of the undamped Timoshenko beam with both ends free. Journal of Mathematical Analysis and Applications vol. 326 488–499 (2007) – 10.1016/j.jmaa.2006.01.020