Port-Hamiltonian formulations for the modeling, simulation and control of fluids
Authors
Flávio Luiz Cardoso-Ribeiro, Ghislain Haine, Yann Le Gorrec, Denis Matignon, Hector Ramirez
Abstract
This paper presents a state of the art on port-Hamiltonian formulations for the modeling and numerical simulation of open fluid systems. This literature review, with the help of more than one hundred classified references, highlights the main features, the positioning with respect to seminal works from the literature on this topic, and the advantages provided by such a framework. A focus is given on the shallow water equations and the incompressible Navier–Stokes equations in 2D, including numerical simulation results. It is also shown how it opens very stimulating and promising research lines towards thermodynamically consistent modeling and structure-preserving numerical methods for the simulation of complex fluid systems in interaction with their environment.
Keywords
Energy-based modeling; Port-Hamiltonian systems; Structure-preserving discretization; Boundary control; Shallow water equations; Incompressible Navier–Stokes equations
Citation
- Journal: Computers & Fluids
- Year: 2024
- Volume: 283
- Issue:
- Pages: 106407
- Publisher: Elsevier BV
- DOI: 10.1016/j.compfluid.2024.106407
BibTeX
@article{Cardoso_Ribeiro_2024,
title={{Port-Hamiltonian formulations for the modeling, simulation and control of fluids}},
volume={283},
ISSN={0045-7930},
DOI={10.1016/j.compfluid.2024.106407},
journal={Computers & Fluids},
publisher={Elsevier BV},
author={Cardoso-Ribeiro, Flávio Luiz and Haine, Ghislain and Le Gorrec, Yann and Matignon, Denis and Ramirez, Hector},
year={2024},
pages={106407}
}
References
- Alonso, A. A., Ydstie, B. E. & Banga, J. R. From irreversible thermodynamics to a robust control theory for distributed process systems. Journal of Process Control vol. 12 507–517 (2002) – 10.1016/s0959-1524(01)00017-8
- Altmann, R., Mehrmann, V. & Unger, B. Port-Hamiltonian formulations of poroelastic network models. Mathematical and Computer Modelling of Dynamical Systems vol. 27 429–452 (2021) – 10.1080/13873954.2021.1975137
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica vol. 15 1–155 (2006) – 10.1017/s0962492906210018
- Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society vol. 47 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Bendimerad-Hohl, A., Haine, G., Lefèvre, L. & Matignon, D. Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model. IFAC-PapersOnLine vol. 56 6789–6795 (2023) – 10.1016/j.ifacol.2023.10.387
- Bendimerad-Hohl, Structure-preserving discretization of the cahn-hilliard equations recast as a port-Hamiltonian system. (2023)
- Bendimerad-Hohl, A., Haine, G., Matignon, D. & Maschke, B. Structure-preserving discretization of a coupled Allen-Cahn and heat equation system. IFAC-PapersOnLine vol. 55 99–104 (2022) – 10.1016/j.ifacol.2022.08.037
- Benner, P., Goyal, P. & Van Dooren, P. Identification of port-Hamiltonian systems from frequency response data. Systems & Control Letters vol. 143 104741 (2020) – 10.1016/j.sysconle.2020.104741
- Bird, R. B. Transport phenomena. Applied Mechanics Reviews vol. 55 R1–R4 (2002) – 10.1115/1.1424298
- Bochev, Principles of mimetic discretizations of differential operators. (2006)
- Boffi, (2015)
- Boyer, (2013)
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Brugnoli, A., Cardoso-Ribeiro, F. L., Haine, G. & Kotyczka, P. Partitioned finite element method for structured discretization with mixed boundary conditions. IFAC-PapersOnLine vol. 53 7557–7562 (2020) – 10.1016/j.ifacol.2020.12.1351
- Brugnoli, A., Haine, G. & Matignon, D. Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control. IFAC-PapersOnLine vol. 55 418–423 (2022) – 10.1016/j.ifacol.2022.11.089
- Brugnoli, A., Haine, G. & Matignon, D. Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint. Communications in Analysis and Mechanics vol. 15 362–387 (2023) – 10.3934/cam.2023018
- Brugnoli, A., Haine, G., Serhani, A. & Vasseur, X. Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. Journal of Applied Mathematics and Physics vol. 09 1278–1321 (2021) – 10.4236/jamp.2021.96088
- Brugnoli, A., Rashad, R. & Stramigioli, S. Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus. Journal of Computational Physics vol. 471 111601 (2022) – 10.1016/j.jcp.2022.111601
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Energetic decomposition of distributed systems with moving material domains: The port-Hamiltonian model of fluid-structure interaction. Journal of Geometry and Physics vol. 175 104477 (2022) – 10.1016/j.geomphys.2022.104477
- Califano, F., Rashad, R. & Stramigioli, S. A differential geometric description of thermodynamics in continuum mechanics with application to Fourier–Navier–Stokes fluids. Physics of Fluids vol. 34 (2022) – 10.1063/5.0119517
- Cardoso-Ribeiro, Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. (2019)
- Cardoso-Ribeiro, (2023)
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. Dissipative Shallow Water Equations: a port-Hamiltonian formulation. IFAC-PapersOnLine vol. 54 167–172 (2021) – 10.1016/j.ifacol.2021.11.073
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. IMA Journal of Mathematical Control and Information vol. 37 1348–1366 (2020) – 10.1093/imamci/dnaa016
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Chorin, (1992)
- Cisneros, N., Rojas, A. J. & Ramirez, H. Port-Hamiltonian Modeling and Control of a Micro-Channel Experimental Plant. IEEE Access vol. 8 176935–176946 (2020) – 10.1109/access.2020.3026653
- Cotter, C. J. Compatible finite element methods for geophysical fluid dynamics. Acta Numerica vol. 32 291–393 (2023) – 10.1017/s0962492923000028
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- De Groot, (2013)
- Diab, Splitting methods for linear circuit DAEs of index 1 in port-Hamiltonian form. (2021)
- Domschke, (2021)
- Dubljevic, Quo vadis advanced chemical process control. Can J Chem Eng (2022)
- Duindam, (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Edwards, B. J., Öttinger, H. C. & Jongschaap, R. J. J. On The Relationships Between Thermodynamic Formalisms For Complex Fluids. Journal of Non-Equilibrium Thermodynamics vol. 22 (1997) – 10.1515/jnet.1997.22.4.356
- Egger, H. Structure preserving approximation of dissipative evolution problems. Numerische Mathematik vol. 143 85–106 (2019) – 10.1007/s00211-019-01050-w
- Emmrich, E. & Mehrmann, V. Operator Differential-Algebraic Equations Arising in Fluid Dynamics. Computational Methods in Applied Mathematics vol. 13 443–470 (2013) – 10.1515/cmam-2013-0018
- Erbay, (2024)
- Erbay, (2024)
- Farle, O., Baltes, R.-B. & Dyczij-Edlinger, R. Strukturerhaltende Diskretisierung verteilt-parametrischer Port-Hamiltonscher Systeme mittels finiter Elemente. at - Automatisierungstechnik vol. 62 500–511 (2014) – 10.1515/auto-2014-1093
- Farle, A port-Hamiltonian finite-element formulation for the maxwell equations. (2013)
- Ferraro, G., Fournié, M. & Haine, G. Simulation and control of interactions in multi-physics, a Python package for port-Hamiltonian systems. IFAC-PapersOnLine vol. 58 119–124 (2024) – 10.1016/j.ifacol.2024.08.267
- Gawlik, E. S. & Gay-Balmaz, F. A Variational Finite Element Discretization of Compressible Flow. Foundations of Computational Mathematics vol. 21 961–1001 (2020) – 10.1007/s10208-020-09473-w
- Gay-Balmaz, A variational formulation of nonequilibrium thermodynamics for discrete open systems with mass and heat transfer. Entropy (2018)
- Gerbeau, Derivation of viscous saint-venant system for laminar shallow water; numerical validation. Discr Contin Dyn Syst - B (2001)
- Geuzaine, C. & Remacle, J. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. International Journal for Numerical Methods in Engineering vol. 79 1309–1331 (2009) – 10.1002/nme.2579
- Ghia, U., Ghia, K. N. & Shin, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics vol. 48 387–411 (1982) – 10.1016/0021-9991(82)90058-4
- Girault, (2011)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Grmela, M. Lagrange hydrodynamics as extended Euler hydrodynamics: Hamiltonian and GENERIC structures. Physics Letters A vol. 296 97–104 (2002) – 10.1016/s0375-9601(02)00190-1
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Haine, G. & Matignon, D. Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation. IFAC-PapersOnLine vol. 54 161–166 (2021) – 10.1016/j.ifacol.2021.11.072
- Haine, Long-time behavior of a coupled heat-wave system using a structure-preserving finite element method. Math Rep (2022)
- Haine, G., Matignon, D. & Monteghetti, F. Structure-preserving discretization of Maxwell’s equations as a port-Hamiltonian system. IFAC-PapersOnLine vol. 55 424–429 (2022) – 10.1016/j.ifacol.2022.11.090
- Ghislain Haine, G. H., Denis Matignon, D. M. & Anass Serhani, A. S. Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled $N$-Dimensional Wave Equation as a Port-Hamiltonian System. International Journal of Numerical Analysis and Modeling vol. 20 92–133 (2023) – 10.4208/ijnam2023-1005
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Hamroun, Port-based modelling for open channel irrigation systems. Trans Fluid Mech (2006)
- Heidari, H. & Zwart, H. Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod. Mathematical and Computer Modelling of Dynamical Systems vol. 25 447–462 (2019) – 10.1080/13873954.2019.1659374
- Hiemstra, R. R., Toshniwal, D., Huijsmans, R. H. M. & Gerritsma, M. I. High order geometric methods with exact conservation properties. Journal of Computational Physics vol. 257 1444–1471 (2014) – 10.1016/j.jcp.2013.09.027
- Jacob, B. & Morris, K. On Solvability of Dissipative Partial Differential-Algebraic Equations. IEEE Control Systems Letters vol. 6 3188–3193 (2022) – 10.1109/lcsys.2022.3183479
- Jacob, (2012)
- Jongschaap, R. J. J. The matrix model, a driven state variables approach to non-equilibrium thermodynamics. Journal of Non-Newtonian Fluid Mechanics vol. 96 63–76 (2001) – 10.1016/s0377-0257(00)00136-1
- Jongschaap, R. & Öttinger, H. C. The mathematical representation of driven thermodynamic systems. Journal of Non-Newtonian Fluid Mechanics vol. 120 3–9 (2004) – 10.1016/j.jnnfm.2003.11.008
- Kotyczka, (2019)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Kraus, Metriplectic integrators for dissipative fluids. (2021)
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Kurula, Linear wave systems on n-d spatial domains. Internat J Control (2015)
- Lagrée, (2021)
- Lamour, (2013)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Lequeurre, J. & Munnier, A. Vorticity and Stream Function Formulations for the 2D Navier–Stokes Equations in a Bounded Domain. Journal of Mathematical Fluid Mechanics vol. 22 (2020) – 10.1007/s00021-019-0479-5
- Logg, (2012)
- Lohmayer, M., Kotyczka, P. & Leyendecker, S. Exergetic port-Hamiltonian systems: modelling basics. Mathematical and Computer Modelling of Dynamical Systems vol. 27 489–521 (2021) – 10.1080/13873954.2021.1979592
- Lopes, N. & Hélie, T. Energy Balanced Model of a Jet Interacting With a Brass Player’s Lip. Acta Acustica united with Acustica vol. 102 141–154 (2016) – 10.3813/aaa.918931
- Marche, F. Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. European Journal of Mechanics - B/Fluids vol. 26 49–63 (2007) – 10.1016/j.euromechflu.2006.04.007
- Maschke, B. & Schaft, A. van der. Linear Boundary Port Hamiltonian Systems defined on Lagrangian submanifolds. IFAC-PapersOnLine vol. 53 7734–7739 (2020) – 10.1016/j.ifacol.2020.12.1526
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Mehrmann, (2024)
- Merker, J. & Krüger, M. On a variational principle in thermodynamics. Continuum Mechanics and Thermodynamics vol. 25 779–793 (2012) – 10.1007/s00161-012-0277-2
- Mohamed, M. S., Hirani, A. N. & Samtaney, R. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes. Journal of Computational Physics vol. 312 175–191 (2016) – 10.1016/j.jcp.2016.02.028
- Mora, L. A., Gorrec, Y. L., Matignon, D. & Ramirez, H. Irreversible port-Hamiltonian modelling of 3D compressible fluids. IFAC-PapersOnLine vol. 56 6394–6399 (2023) – 10.1016/j.ifacol.2023.10.836
- Mora, L. A., Le Gorrec, Y., Matignon, D., Ramirez, H. & Yuz, J. I. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. Physics of Fluids vol. 33 (2021) – 10.1063/5.0067784
- Mora, L. A., Ramirez, H., Yuz, J. I., Le Gorec, Y. & Zañartu, M. Energy-based fluid–structure model of the vocal folds. IMA Journal of Mathematical Control and Information vol. 38 466–492 (2020) – 10.1093/imamci/dnaa031
- Mora, L. A., Yann, L. G., Ramirez, H. & Yuz, J. Fluid-Structure Port-Hamiltonian Model for Incompressible Flows in Tubes with Time Varying Geometries. Mathematical and Computer Modelling of Dynamical Systems vol. 26 409–433 (2020) – 10.1080/13873954.2020.1786841
- Morandin, (2024)
- Morrison, P. J. Bracket formulation for irreversible classical fields. Physics Letters A vol. 100 423–427 (1984) – 10.1016/0375-9601(84)90635-2
- Morrison, P. J. Hamiltonian description of the ideal fluid. Reviews of Modern Physics vol. 70 467–521 (1998) – 10.1103/revmodphys.70.467
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems vol. 22 181–206 (2016) – 10.1080/13873954.2016.1154874
- Olver, (1993)
- Öttinger, H. C. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems. Journal of Non-Equilibrium Thermodynamics vol. 43 89–100 (2018) – 10.1515/jnet-2017-0034
- Öttinger, H. C. & Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Physical Review E vol. 56 6633–6655 (1997) – 10.1103/physreve.56.6633
- Pasumarthy, Port-Hamiltonian formulation of shallow water equations with coriolis force and topography. (2008)
- Pasumarthy, R., Ambati, V. R. & van der Schaft, A. J. Port-Hamiltonian discretization for open channel flows. Systems & Control Letters vol. 61 950–958 (2012) – 10.1016/j.sysconle.2012.05.003
- Payen, G., Matignon, D. & Haine, G. Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system. IFAC-PapersOnLine vol. 53 7581–7586 (2020) – 10.1016/j.ifacol.2020.12.1355
- Philipp, (2023)
- Ramirez, H. & Gorrec, Y. L. An irreversible port-Hamiltonian formulation of distributed diffusion processes. IFAC-PapersOnLine vol. 49 46–51 (2016) – 10.1016/j.ifacol.2016.10.752
- Ramirez, An overview on irreversible port-Hamiltonian systems. Entropy (2022)
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Rashad, Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. J Geom Phys (2021)
- Rashad, Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. J Geom Phys (2021)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Reis, (2023)
- Rettberg, J. et al. Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar. Mathematical and Computer Modelling of Dynamical Systems vol. 29 116–148 (2023) – 10.1080/13873954.2023.2173238
- Schiebl, M. & Betsch, P. Structure‐preserving space‐time discretization of large‐strain thermo‐viscoelasticity in the framework of GENERIC. International Journal for Numerical Methods in Engineering vol. 122 3448–3488 (2021) – 10.1002/nme.6670
- Serhani, A., Matignon, D. & Haine, G. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. Lecture Notes in Computer Science 549–558 (2019) doi:10.1007/978-3-030-26980-7_57 – 10.1007/978-3-030-26980-7_57
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Serhani, A., Matignon, D. & Haine, G. Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. IFAC-PapersOnLine vol. 52 96–101 (2019) – 10.1016/j.ifacol.2019.08.017
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Skrepek, N. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations & Control Theory vol. 10 965 (2021) – 10.3934/eect.2020098
- Temam, (2001)
- Thuburn, J. & Cotter, C. J. A primal–dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes. Journal of Computational Physics vol. 290 274–297 (2015) – 10.1016/j.jcp.2015.02.045
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, (2013)
- van der Schaft, A. Classical Thermodynamics Revisited: A Systems and Control Perspective. IEEE Control Systems vol. 41 32–60 (2021) – 10.1109/mcs.2021.3092809
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, Geometry of thermodynamic processes. Entropy (2018)
- van der Schaft, A. & Mehrmann, V. Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters vol. 177 105564 (2023) – 10.1016/j.sysconle.2023.105564
- Vu, N. M. T., Lefèvre, L. & Maschke, B. Geometric spatial reduction for port-Hamiltonian systems. Systems & Control Letters vol. 125 1–8 (2019) – 10.1016/j.sysconle.2019.01.002
- Vu, N. M. T., Lefèvre, L., Nouailletas, R. & Brémond, S. Symplectic spatial integration schemes for systems of balance equations. Journal of Process Control vol. 51 1–17 (2017) – 10.1016/j.jprocont.2016.12.005
- Warsewa, A., Böhm, M., Sawodny, O. & Tarín, C. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling vol. 89 1528–1546 (2021) – 10.1016/j.apm.2020.07.038
- Zhang, Y., Palha, A., Gerritsma, M. & Rebholz, L. G. A mass-, kinetic energy- and helicity-conserving mimetic dual-field discretization for three-dimensional incompressible Navier-Stokes equations, part I: Periodic domains. Journal of Computational Physics vol. 451 110868 (2022) – 10.1016/j.jcp.2021.110868