Structure-preserving discretization of a coupled Allen-Cahn and heat equation system
Authors
Antoine Bendimerad-Hohl, Ghislain Haine, Denis Matignon, Bernhard Maschke
Abstract
Eutectic freeze crystallisation is a promising way of purifying water for it may require less energy than other methods. In order to simulate such a process, phase field models such as Allen-Cahn and Cahn-Hilliard can be used. In this paper, a port-Hamiltonian formulation of the Allen-Cahn equations is used and coupled to heat conduction, which allows for a thermodynamically consistent system to be written with the help of the entropy functional. In a second part, the Partitioned Finite Element Method, a structure-preserving spatial discretization method, is applied to the Allen-Cahn equation; it gives rise to an exact free energy balance at the discrete level. Finally some numerical results are presented.
Keywords
port-Hamiltonian systems; Partitioned Finite Element Method; Phase Field; Diffuse Interface; Solidification process; Entropy
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 18
- Pages: 99–104
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.08.037
- Note: 4th IFAC Workshop on Thermodynamics Foundations of Mathematical Systems Theory TFMST 2022- Montreal, Canada, 25–27 July 2022
BibTeX
@article{Bendimerad_Hohl_2022,
title={{Structure-preserving discretization of a coupled Allen-Cahn and heat equation system}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.08.037},
number={18},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Bendimerad-Hohl, Antoine and Haine, Ghislain and Matignon, Denis and Maschke, Bernhard},
year={2022},
pages={99--104}
}
References
- Beier, N., Sego, D., Donahue, R. & Biggar, K. Laboratory investigation on freeze separation of saline mine waste water. Cold Regions Science and Technology vol. 48 239–247 (2007) – 10.1016/j.coldregions.2006.12.002
- Bendimerad-Hohl, (2022)
- Boettinger, W. J., Warren, J. A., Beckermann, C. & Karma, A. Phase-Field Simulation of Solidification. Annual Review of Materials Research vol. 32 163–194 (2002) – 10.1146/annurev.matsci.32.101901.155803
- Bonales, L. J., Rodriguez, A. C. & Sanz, P. D. Thermal conductivity of ice prepared under different conditions. International Journal of Food Properties vol. 20 610–619 (2017) – 10.1080/10942912.2017.1306551
- Cahn, J. W. & Hilliard, J. E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics vol. 28 258–267 (1958) – 10.1063/1.1744102
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Jon Matteo Church, J. M. C. et al. High Accuracy Benchmark Problems for Allen-Cahn and Cahn-Hilliard Dynamics. Communications in Computational Physics vol. 26 947–972 (2019) – 10.4208/cicp.oa-2019-0006
- Egger, H., Habrich, O. & Shashkov, V. On the Energy Stable Approximation of Hamiltonian and Gradient Systems. Computational Methods in Applied Mathematics vol. 21 335–349 (2020) – 10.1515/cmam-2020-0025
- Hohenberg, P. C. & Krekhov, A. P. An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns. Physics Reports vol. 572 1–42 (2015) – 10.1016/j.physrep.2015.01.001
- Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Physica D: Nonlinear Phenomena vol. 63 410–423 (1993) – 10.1016/0167-2789(93)90120-p
- Kobayashi, R., Wang, W., Tsukamoto, K. & Wu, D. A brief introduction to phase field method. AIP Conference Proceedings (2010) doi:10.1063/1.3476232 – 10.1063/1.3476232
- Penrose, O. & Fife, P. C. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D: Nonlinear Phenomena vol. 43 44–62 (1990) – 10.1016/0167-2789(90)90015-h
- Randall, D. G., Nathoo, J. & Lewis, A. E. A case study for treating a reverse osmosis brine using Eutectic Freeze Crystallization—Approaching a zero waste process. Desalination vol. 266 256–262 (2011) – 10.1016/j.desal.2010.08.034
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- van der Ham, F., Witkamp, G. J., de Graauw, J. & van Rosmalen, G. M. Eutectic freeze crystallization: Application to process streams and waste water purification. Chemical Engineering and Processing: Process Intensification vol. 37 207–213 (1998) – 10.1016/s0255-2701(97)00055-x
- van der Schaft, Port-Hamiltonian systems: an introductory survey. Proceedings of the international congress of mathematicians (2006)
- Vincent, B., Couenne, F., Lefèvre, L. & Maschke, B. Port Hamiltonian systems with moving interface: a phase field approach. IFAC-PapersOnLine vol. 53 7569–7574 (2020) – 10.1016/j.ifacol.2020.12.1353
- Wagner, W. & Pruß, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data vol. 31 387–535 (2002) – 10.1063/1.1461829
- Wang, S.-L. et al. Thermodynamically-consistent phase-field models for solidification. Physica D: Nonlinear Phenomena vol. 69 189–200 (1993) – 10.1016/0167-2789(93)90189-8
- Yaghi, Port-Hamiltonian formulation of the solidification process of pure substance: A phase field approach. (2022)
- Yuan, H. et al. Ice crystal growth in the freezing desalination process of binary water-NaCl system. Desalination vol. 496 114737 (2020) – 10.1016/j.desal.2020.114737