Irreversible port-Hamiltonian modelling of 3D compressible fluids
Authors
Luis A. Mora, Yann Le Gorrec, Denis Matignon, Hector Ramirez
Abstract
Boundary controlled irreversible port-Hamiltonian systems (BC-IPHS) defined on 1, 2 and 3-dimensional spatial domains are defined by extending the formulation of reversible BC-PHS to irreversible thermodynamic systems controlled at the boundaries of their spatial domain. The structure of BC-IPHS has a clear physical interpretation, characterizing the coupling between energy storing and energy dissipating elements. By extending the definition of boundary port variables of BC-PHS to deal with the irreversible energy dissipation, a set of boundary port variables is defined so that BC-IPHS are passive with respect to a given set of conjugated inputs and outputs. As for finite-dimensional IPHS and 1-D infinite-dimensional IPHS recently defined in [Ramirez et al., Chem. Eng. Sci. (2022)], the first and second laws of Thermodynamics are satisfied as a structural property of the system. As a common thread, the 3D compressible fluid example is worked out to illustrate the proposed approach: both the reversible case of the isentropic fluid and the irreversible case of the non-isentropic fluid are presented.
Keywords
Boundary control systems; infinite-dimensional port-Hamiltonian systems; asymptotic stability; non-linear control; irreversible thermodynamics
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 2
- Pages: 6394–6399
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.10.836
- Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023
BibTeX
@article{Mora_2023,
title={{Irreversible port-Hamiltonian modelling of 3D compressible fluids}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.10.836},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Mora, Luis A. and Gorrec, Yann Le and Matignon, Denis and Ramirez, Hector},
year={2023},
pages={6394--6399}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Bhuvan, C. H., Hiranandani, K., Aravind, B., Nair, V. & Kumar, S. Novel flame dynamics in rich mixture of premixed propane–air in a planar microcombustor. Physics of Fluids vol. 32 (2020) – 10.1063/5.0020518
- Bird, (2007)
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Califano, F., Rashad, R., Schuller, F. P. & Stramigioli, S. Geometric and energy-aware decomposition of the Navier–Stokes equations: A port-Hamiltonian approach. Physics of Fluids vol. 33 (2021) – 10.1063/5.0048359
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Curtain, (1995)
- De Groot, (1962)
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
- Gassner, A novel robust strategy for discontinuous Galerkin methods in computational fluid mechanics: why? when? what? where?. Front. Phys. (2021)
- Guryanov, A. I., Piralishvili, Sh. A., Guryanova, M. M., Evdokimov, O. A. & Veretennikov, S. V. Counter-current hydrogen–oxygen vortex combustion chamber. Thermal physics of processing. Journal of the Energy Institute vol. 93 634–641 (2020) – 10.1016/j.joei.2019.06.002
- Hadwin, The influence of flow model selection on finite element model parameter estimation using Bayesian inference. JASA-EL (2021)
- Haine, Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as a port-Hamiltonian system. Int. J. Numer. Anal. Mod. (2023)
- Hamroun, Port-based modelling for open channel irrigation systems. Transactions on Fluid Mechanics (2006)
- Hoda, A comparative study of natural gas and biogas combustion in a swirling flow gas turbine combustor. Combust. Sci. Technol. (2021)
- Jacob, (2012)
- Jacob, B. & Morris, K. On Solvability of Dissipative Partial Differential-Algebraic Equations. IEEE Control Systems Letters vol. 6 3188–3193 (2022) – 10.1109/lcsys.2022.3183479
- Ji, Y., Lin, C. & Luo, K. H. Three-dimensional multiple-relaxation-time discrete Boltzmann model of compressible reactive flows with nonequilibrium effects. AIP Advances vol. 11 (2021) – 10.1063/5.0047480
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Lei, Lattice Boltzmann simulation of multicomponent porous media flows with chemical reaction. Front. Phys. (2021)
- Liu, Energy based modeling of ionic polymer metal composite actuators dedicated to the control of flexible structures. IEEE/ASME Transactions on Mechatronics (2021)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Mora, Available energy-based interconnection and entropy assignment (ABI-EA) boundary control of the heat equation: An irreversible port-Hamiltonian approach. (2022)
- Mora, L. A., Gorrec, Y. L., Matignon, D., Ramirez, H. & Yuz, J. I. About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows. IFAC-PapersOnLine vol. 53 11521–11526 (2020) – 10.1016/j.ifacol.2020.12.604
- Mora, L. A., Le Gorrec, Y., Matignon, D., Ramirez, H. & Yuz, J. I. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. Physics of Fluids vol. 33 (2021) – 10.1063/5.0067784
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice vol. 19 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Pandey, K., Chattopadhyay, K. & Basu, S. Combustion dynamics of low vapour pressure nanofuel droplets. Physics of Fluids vol. 29 (2017) – 10.1063/1.4991752
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control vol. 19 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramirez, H. & Le Gorrec, Y. An Overview on Irreversible Port-Hamiltonian Systems. Entropy vol. 24 1478 (2022) – 10.3390/e24101478
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Rashad, Port-Hamiltonian modeling of ideal fluid flow: Part I. foundations and kinetic energy. Journal of Geometry and Physics (2021)
- Rashad, Port-Hamiltonian modeling of ideal fluid flow: Part II. compressible and incompressible flow. Journal of Geometry and Physics (2021)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems vol. 14 179–193 (2008) – 10.1080/13873950701844824
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Thomson, S. L., Mongeau, L. & Frankel, S. H. Aerodynamic transfer of energy to the vocal folds. The Journal of the Acoustical Society of America vol. 118 1689–1700 (2005) – 10.1121/1.2000787
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Voß, T. & Scherpen, J. M. A. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation. SIAM Journal on Control and Optimization vol. 52 493–519 (2014) – 10.1137/090774598
- Zhou, W., Hamroun, B., Couenne, F. & Le Gorrec, Y. Distributed port-Hamiltonian modelling for irreversible processes. Mathematical and Computer Modelling of Dynamical Systems vol. 23 3–22 (2016) – 10.1080/13873954.2016.1237970