Exergetic port-Hamiltonian systems: modelling basics
Authors
Markus Lohmayer, Paul Kotyczka, Sigrid Leyendecker
Abstract
Port-Hamiltonian systems theory provides a structured approach to modelling, optimization and control of multiphysical systems. Yet, its relationship to thermodynamics seems to be unclear. The Hamiltonian is traditionally thought of as energy, although its meaning is exergy. This insight yields benefits: 1. Links to the GENERIC structure are identified, making it relatively easy to borrow ideas from a popular nonequilibrium thermodynamics framework. 2. The port-Hamiltonian structure combined with a bond-graph syntax is expected to become a main ingredient in thermodynamic optimization methods akin to exergy analysis and beyond. The intuitive nature of exergy and diagrammatic language facilitates interdisciplinary communication that is necessary for implementing sustainable energy systems and processes. Port-Hamiltonian systems are cyclo-passive, meaning that a power-balance equation immediately follows from their definition. For exergetic port-Hamiltonian systems, cyclo-passivity is synonymous with degradation of energy and follows from the first and the second law of thermodynamics being encoded as structural properties.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2021
- Volume: 27
- Issue: 1
- Pages: 489–521
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2021.1979592
BibTeX
@article{Lohmayer_2021,
title={{Exergetic port-Hamiltonian systems: modelling basics}},
volume={27},
ISSN={1744-5051},
DOI={10.1080/13873954.2021.1979592},
number={1},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Lohmayer, Markus and Kotyczka, Paul and Leyendecker, Sigrid},
year={2021},
pages={489--521}
}
References
- Szargut J., Exergy Method: Technical and Ecological Applications (2005)
- Rant Z., Forschung auf dem Gebiet des Ingenieurwesens A (1956)
- Gibbs J.W., Trans Connecticut Acad Arts Sci. (1873)
- Gaggioli, R. A., Richardson, D. H. & Bowman, A. J. Available Energy—Part I: Gibbs Revisited. Journal of Energy Resources Technology vol. 124 105–109 (2002) – 10.1115/1.1448336
- Gaggioli, R. A. & Paulus, D. M., Jr. Available Energy—Part II: Gibbs Extended. Journal of Energy Resources Technology vol. 124 110–115 (2002) – 10.1115/1.1448337
- Keenan, J. H. Availability and irreversibility in thermodynamics. British Journal of Applied Physics vol. 2 183–192 (1951) – 10.1088/0508-3443/2/7/302
- Thermodynamics: Second Law Analysis. ACS Symposium Series (1980) doi:10.1021/bk-1980-0122 – 10.1021/bk-1980-0122
- Kotas T., The Exergy Method of Thermal Plant Analysis (1985)
- Bejan, A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics vol. 79 1191–1218 (1996) – 10.1063/1.362674
- Andresen, B. Current Trends in Finite‐Time Thermodynamics. Angewandte Chemie International Edition vol. 50 2690–2704 (2011) – 10.1002/anie.201001411
- Rubin, M. H. Optimal configuration of a class of irreversible heat engines. I. Physical Review A vol. 19 1272–1276 (1979) – 10.1103/physreva.19.1272
- Rubin, M. H. Optimal configuration of a class of irreversible heat engines. II. Physical Review A vol. 19 1277–1289 (1979) – 10.1103/physreva.19.1277
- Salamon, P., Nulton, J. D., Siragusa, G., Andersen, T. R. & Limon, A. Principles of control thermodynamics. Energy vol. 26 307–319 (2001) – 10.1016/s0360-5442(00)00059-1
- McGovern J.A., Proceedings of International Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems (1992)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Dorfman I., Dirac Structures and Integrability of Nonlinear Evolution Equations (1993)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Merker, J. On the Geometric Structure of Hamiltonian Systems with Ports. Journal of Nonlinear Science vol. 19 717–738 (2009) – 10.1007/s00332-009-9052-3
- Barbero-Liñán, M., Cendra, H., García-Toraño Andrés, E. & Martín de Diego, D. New insights in the geometry and interconnection of port-Hamiltonian systems. Journal of Physics A: Mathematical and Theoretical vol. 51 375201 (2018) – 10.1088/1751-8121/aad4ba
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. Cyclo-Dissipativity Revisited. IEEE Transactions on Automatic Control vol. 66 2920–2924 (2021) – 10.1109/tac.2020.3013941
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Eberard, D. & Maschke, B. Port hamiltonian systems extended to irreversible systems : The example of the heat conduction. IFAC Proceedings Volumes vol. 37 243–248 (2004) – 10.1016/s1474-6670(17)31230-2
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Hermann R., Geometry, Physics, and Systems (1973)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925
- Dzyaloshinskii, I. E. & Volovick, G. E. Poisson brackets in condensed matter physics. Annals of Physics vol. 125 67–97 (1980) – 10.1016/0003-4916(80)90119-0
- Grmela M., Contemp. Math. Vol. 28, Amer. Math. Soc. (1984)
- Kaufman, A. N. Dissipative hamiltonian systems: A unifying principle. Physics Letters A vol. 100 419–422 (1984) – 10.1016/0375-9601(84)90634-0
- Morrison, P. J. Bracket formulation for irreversible classical fields. Physics Letters A vol. 100 423–427 (1984) – 10.1016/0375-9601(84)90635-2
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Physical Review E vol. 56 6620–6632 (1997) – 10.1103/physreve.56.6620
- Öttinger, H. C. & Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Physical Review E vol. 56 6633–6655 (1997) – 10.1103/physreve.56.6633
- Öttinger, H. C. Beyond Equilibrium Thermodynamics. (2005) doi:10.1002/0471727903 – 10.1002/0471727903
- Pavelka, M., Klika, V. & Grmela, M. Multiscale Thermo-Dynamics. (2018) doi:10.1515/9783110350951 – 10.1515/9783110350951
- Pavelka, M., Klika, V. & Grmela, M. Time reversal in nonequilibrium thermodynamics. Physical Review E vol. 90 (2014) – 10.1103/physreve.90.062131
- Jaynes, E. T. Information Theory and Statistical Mechanics. Physical Review vol. 106 620–630 (1957) – 10.1103/physrev.106.620
- Klika, V., Pavelka, M., Vágner, P. & Grmela, M. Dynamic Maximum Entropy Reduction. Entropy vol. 21 715 (2019) – 10.3390/e21070715
- Grmela, M. GENERIC guide to the multiscale dynamics and thermodynamics. Journal of Physics Communications vol. 2 032001 (2018) – 10.1088/2399-6528/aab642
- Mielke, A., Renger, D. R. M. & Peletier, M. A. A Generalization of Onsager’s Reciprocity Relations to Gradient Flows with Nonlinear Mobility. Journal of Non-Equilibrium Thermodynamics vol. 41 141–149 (2016) – 10.1515/jnet-2015-0073
- de Groot S., Non-equilibrium Thermodynamics (1984)
- Hütter, M. & Svendsen, B. Quasi-linear versus potential-based formulations of force–flux relations and the GENERIC for irreversible processes: comparisons and examples. Continuum Mechanics and Thermodynamics vol. 25 803–816 (2013) – 10.1007/s00161-012-0289-y
- Shang, X. & Öttinger, H. C. Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 476 20190446 (2020) – 10.1098/rspa.2019.0446
- Öttinger, H. C. Nonequilibrium thermodynamics for open systems. Physical Review E vol. 73 (2006) – 10.1103/physreve.73.036126
- Badlyan A.M., Operator-GENERIC Formulation of Thermodynamics of Irreversible Processes (2018)
- Ydstie, B. E. & Alonso, A. A. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters vol. 30 253–264 (1997) – 10.1016/s0167-6911(97)00023-6
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Zitte, B., Hamroun, B., Couenne, F. & Pitault, I. Representation of heat exchanger networks using graph formalism. IFAC-PapersOnLine vol. 51 44–49 (2018) – 10.1016/j.ifacol.2018.06.012
- Badlyan A.M., Proceedings of the 23rd International Symposium on Mathematical Theory of Systems and Networks (2018)
- Hauschild, S.-A. et al. Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–355 (2020) doi:10.1007/978-3-030-53905-4_11 – 10.1007/978-3-030-53905-4_11
- Weinstein, A. The local structure of Poisson manifolds. Journal of Differential Geometry vol. 18 (1983) – 10.4310/jdg/1214437787
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1999). doi:10.1007/978-0-387-21792-5 – 10.1007/978-0-387-21792-5
- Bursztyn, H. A brief introduction to Dirac manifolds. Geometric and Topological Methods for Quantum Field Theory 4–38 (2013) doi:10.1017/cbo9781139208642.002 – 10.1017/cbo9781139208642.002
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Batlle, C., Massana, I. & Simo, E. Representation of a general composition of Dirac structures. IEEE Conference on Decision and Control and European Control Conference 5199–5204 (2011) doi:10.1109/cdc.2011.6160588 – 10.1109/cdc.2011.6160588
- Bloch, A. M. & Crouch, P. E. Representations of Dirac structures on vector spaces and nonlinear L-C circuits. Proceedings of Symposia in Pure Mathematics 103–117 (1998) doi:10.1090/pspum/064/1654513 – 10.1090/pspum/064/1654513
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Carnot S., Réflexions sur la puissance motrice de feu et sur les machines propres à développer cette puissance (1824)
- Thomson W., Philos. Mag. (1848)
- XV. On the thermal effects of fluids in motion - Part II. Philosophical Transactions of the Royal Society of London vol. 144 321–364 (1854) – 10.1098/rstl.1854.0016
- Clausius, R. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik vol. 155 500–524 (1850) – 10.1002/andp.18501550403
- Thomson, W. XLVII. On a universal tendency in nature to the dissipation of mechanical energy. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science vol. 4 304–306 (1852) – 10.1080/14786445208647126
- Clausius, R. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik vol. 201 353–400 (1865) – 10.1002/andp.18652010702
- Bejan A., Thermal Design and Optimization (1996)
- Wang, L. S. Exergy or the entropic drive: waste heat and free heat. International Journal of Exergy vol. 12 491 (2013) – 10.1504/ijex.2013.055077
- Wang, L.-S. The Second Law: From Carnot to Thomson-Clausius, to the Theory of Exergy, and to the Entropy-Growth Potential Principle. Entropy vol. 19 57 (2017) – 10.3390/e19020057
- Callen, H. B. & Griffiths, R. B. Thermodynamics and an Introduction to Thermostatistics. American Journal of Physics vol. 55 860–861 (1987) – 10.1119/1.14986
- Curzon, F. L. & Ahlborn, B. Efficiency of a Carnot engine at maximum power output. American Journal of Physics vol. 43 22–24 (1975) – 10.1119/1.10023
- Miranda, E. N. On the Maximum Efficiency of Realistic Heat Engines. International Journal of Mechanical Engineering Education vol. 35 76–78 (2007) – 10.7227/ijmee.35.1.6