Simulation and control of interactions in multi-physics, a Python package for port-Hamiltonian systems
Authors
Giuseppe Ferraro, Michel Fournié, Ghislain Haine
Abstract
The Python package SCRIMP (Simulation and ContRol of Interactions in Multi-Physics) is presented through a collection of port-Hamiltonian systems (pHs) of increasing complexity, stemming from mechanics and thermodynamics. A focus is made on the syntax of SCRIMP allowing the user to easily describe a distributed pHs and its discretization method using the Partitioned Finite Element Method (PFEM) in space, together with the Differential Algebraic Equation (DAE) solver to use. A Graphical User Interface (GUI) is presented.
Keywords
Port-Hamiltonian systems; Structure-preserving discretization; Python package
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 119–124
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.267
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Ferraro_2024,
title={{Simulation and control of interactions in multi-physics, a Python package for port-Hamiltonian systems}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.267},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Ferraro, Giuseppe and Fournié, Michel and Haine, Ghislain},
year={2024},
pages={119--124}
}
References
- Abhyankar, (2018)
- Brugnoli, A., Haine, G. & Matignon, D. Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint. Communications in Analysis and Mechanics vol. 15 362–387 (2023) – 10.3934/cam.2023018
- Brugnoli, A., Rashad, R. & Stramigioli, S. Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus. Journal of Computational Physics vol. 471 111601 (2022) – 10.1016/j.jcp.2022.111601
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Egger, H. Structure preserving approximation of dissipative evolution problems. Numerische Mathematik vol. 143 85–106 (2019) – 10.1007/s00211-019-01050-w
- Egger, H., Habrich, O. & Shashkov, V. On the Energy Stable Approximation of Hamiltonian and Gradient Systems. Computational Methods in Applied Mathematics vol. 21 335–349 (2020) – 10.1515/cmam-2020-0025
- Geuzaine, C. & Remacle, J. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. International Journal for Numerical Methods in Engineering vol. 79 1309–1331 (2009) – 10.1002/nme.2579
- Haine, Long-time behavior of a coupled heat-wave system using a structure-preserving finite element method. Math. Reports (2022)
- Ghislain Haine, G. H., Denis Matignon, D. M. & Anass Serhani, A. S. Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled $N$-Dimensional Wave Equation as a Port-Hamiltonian System. International Journal of Numerical Analysis and Modeling vol. 20 92–133 (2023) – 10.4208/ijnam2023-1005
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Renard, Y. & Poulios, K. GetFEM. ACM Transactions on Mathematical Software vol. 47 1–31 (2020) – 10.1145/3412849
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3